首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study resilient functions and exposure‐resilient functions in the low‐entropy regime. A resilient function (a.k.a. deterministic extractor for oblivious bit‐fixing sources) maps any distribution on n ‐bit strings in which k bits are uniformly random and the rest are fixed into an output distribution that is close to uniform. With exposure‐resilient functions, all the input bits are random, but we ask that the output be close to uniform conditioned on any subset of nk input bits. In this paper, we focus on the case that k is sublogarithmic in n. We simplify and improve an explicit construction of resilient functions for k sublogarithmic in n due to Kamp and Zuckerman (SICOMP 2006), achieving error exponentially small in k rather than polynomially small in k. Our main result is that when k is sublogarithmic in n, the short output length of this construction (O(log k) output bits) is optimal for extractors computable by a large class of space‐bounded streaming algorithms. Next, we show that a random function is a resilient function with high probability if and only if k is superlogarithmic in n, suggesting that our main result may apply more generally. In contrast, we show that a random function is a static (resp. adaptive) exposure‐resilient function with high probability even if k is as small as a constant (resp. loglog n). No explicit exposure‐resilient functions achieving these parameters are known. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2013  相似文献   

2.
A multigraph is (k,r)‐dense if every k‐set spans at most r edges. What is the maximum number of edges ex?(n,k,r) in a (k,r)‐dense multigraph on n vertices? We determine the maximum possible weight of such graphs for almost all k and r (e.g., for all r>k3) by determining a constant m=m(k,r) and showing that ex?(n,k,r)=m +O(n), thus giving a generalization of Turán's theorem. We find exact answers in many cases, even when negative integer weights are also allowed. In fact, our main result is to determine the maximum weight of (k,r)‐dense n‐vertex multigraphs with arbitrary integer weights with an O(n) error term. © 2002 Wiley Periodicals, Inc. J Graph Theory 40: 195–225, 2002  相似文献   

3.
Cryan and Miltersen (Proceedings of the 26th Mathematical Foundations of Computer Science, 2001, pp. 272–284) recently considered the question of whether there can be a pseudorandom generator in NC0, that is, a pseudorandom generator that maps n‐bit strings to m‐bit strings such that every bit of the output depends on a constant number k of bits of the seed. They show that for k = 3, if m ≥ 4n + 1, there is a distinguisher; in fact, they show that in this case it is possible to break the generator with a linear test, that is, there is a subset of bits of the output whose XOR has a noticeable bias. They leave the question open for k ≥ 4. In fact, they ask whether every NC0 generator can be broken by a statistical test that simply XORs some bits of the input. Equivalently, is it the case that no NC0 generator can sample an ε‐biased space with negligible ε? We give a generator for k = 5 that maps n bits into cn bits, so that every bit of the output depends on 5 bits of the seed, and the XOR of every subset of the bits of the output has bias 2. For large values of k, we construct generators that map n bits to bits such that every XOR of outputs has bias . We also present a polynomial‐time distinguisher for k = 4,m ≥ 24n having constant distinguishing probability. For large values of k we show that a linear distinguisher with a constant distinguishing probability exists once m ≥ Ω(2kn?k/2?). Finally, we consider a variant of the problem where each of the output bits is a degree k polynomial in the inputs. We show there exists a degree k = 2 pseudorandom generator for which the XOR of every subset of the outputs has bias 2?Ω(n) and which maps n bits to Ω(n2) bits. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

4.
We consider the problem of computing with faulty components in the context of the Boolean decision tree model, in which cost is measured by the number of input bits queried, and the responses to queries are faulty with a fixed probability. We show that if f can be represented in k-DNF form and in j-CNF form, then O(n log(min(k, j)/q)) queries suffice to compute f with error probability less than q, where n is the number of input bits. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
Let m(r, k) denote the minimum number of edges in an r‐uniform hypergraph that is not k‐colorable. We give a new lower bound on m(r, k) for fixed k and large r. Namely, we prove that if k ≥ 2n, then m(r, k) ≥ ?(k)kr(r/ln r)n/(n+1). © 2003 Wiley Periodicals, Inc. Random Struct. Alg., 2004  相似文献   

6.
We show that for all k ≥ 3, r > l ≥ 2 there exists constant c = c(k, r, l) such that for large enough n there exists a k‐color‐critical r‐uniform hypergraph on less than n vertices, having more than cnl edges, and having no l‐set of vertices occuring in more than one edge. © 2006 Wiley Periodicals, Inc. J Graph Theory 53: 56–74, 2006  相似文献   

7.
Dedicated to the Memory of Paul Erdős We generalize the multiparty communication model of Chandra, Furst, and Lipton (1983) to functions with b-bit output (b = 1 in the CFL model). We allow the players to receive up to b - 1 bits of information from an all-powerful benevolent Helper who can see all the input. Extending results of Babai, Nisan, and Szegedy (1992) to this model, we construct families of explicit functions for which bits of communication are required to find the "missing bit", where n is the length of each player's input and k is the number of players. As a consequence we settle the problem of separating the one-way vs. multiround communication complexities (in the CFL sense) for players, extending a result of Nisan and Wigderson (1991) who demonstrated this separation for k = 3 players. As a by-product we obtain lower bounds for the multiparty complexity (in the CFL sense) of new families of explicit boolean functions (not derivable from BNS). The proofs exploit the interplay between two concepts of multicolor discrepancy; discrete Fourier analysis is the basic tool. We also include an unpublished lower bound by A. Wigderson regarding the one-way complexity of the 3-party pointer jumping function. Received November 12, 1998 RID="*" ID="*" Supported in part by NSA grant MSPR-96G-184. RID="†" ID="†" Supported in part by an NSF Graduate Fellowship.  相似文献   

8.
(2,k)-Factor-Critical Graphs and Toughness   总被引:1,自引:0,他引:1  
 A graph is (r,k)-factor-critical if the removal of any set of k vertices results in a graph with an r-factor (i.e. with an r-regular spanning subgraph). We show that every τ-tough graph of order n with τ≥2 is (2,k)-factor-critical for every non-negative integer k≤min{2τ−2, n−3}, thus proving a conjecture as well as generalizing the main result of Liu and Yu in [4]. Received: December 16, 1996 / Revised: September 17, 1997  相似文献   

9.
We construct a property on 0/1‐strings that has a representation by a collection of width‐3 read‐twice oblivious branching programs, but for which any two‐sided ?‐testing algorithm must query at least Ω(nδ) many queries for some fixed ? and δ. This shows that Newman's result [Testing of functions that have small width branching programs, SIAM J Comput 31 (2002), 1557–1570] cannot be generalized to read‐k‐times functions for k > 1. In addition, we exhibit a property that has also a representation by a CNF formula of constant clause size. Hence, the nontestability results extend to properties that in addition have small (constant size) 0‐witnesses. © 2004 Wiley Periodicals, Inc. Random Struct. Alg., 2004  相似文献   

10.
The tree partition number of an r‐edge‐colored graph G, denoted by tr(G), is the minimum number k such that whenever the edges of G are colored with r colors, the vertices of G can be covered by at most k vertex‐disjoint monochromatic trees. We determine t2(K(n1, n2,…, nk)) of the complete k‐partite graph K(n1, n2,…, nk). In particular, we prove that t2(K(n, m)) = ? (m‐2)/2n? + 2, where 1 ≤ nm. © 2004 Wiley Periodicals, Inc. J Graph Theory 48: 133–141, 2005  相似文献   

11.
The existence of NRB[v,k] where k ≥ 7 and k + 1 is an even prime power is considered. We will show that there exists an NRB[kn + 1, k] for all n > (3k)b-1(kb)3kb(b-1)+1, where k + 1 is an even prime power, k ≥ 7 and . The tools used to construct this bound include the frames extracted from a construction of J. X. Lu's for resolvable balanced incomplete block designs © 1998 John Wiley & Sons, Inc. J Combin Designs 6:43–49, 1998  相似文献   

12.
We present three alternative simple constructions of small probability spaces on n bits for which any k bits are almost independent. The number of bits used to specify a point in the sample space is (2 + o(1)) (log log n + k/2 + log k + log 1/?), where ? is the statistical difference between the distribution induced on any k bit locations and the uniform distribution. This is asymptotically comparable to the construction recently presented by Naor and Naor (our size bound is better as long as ? < 1/(k log n)). An additional advantage of our constructions is their simplicity.  相似文献   

13.
Let k be an algebraically closed field. Let Λ be the path algebra over k of the linearly oriented quiver \mathbb An\mathbb A_n for n ≥ 3. For r ≥ 2 and n > r we consider the finite dimensional k −algebra Λ(n,r) which is defined as the quotient algebra of Λ by the two sided ideal generated by all paths of length r. We will determine for which pairs (n,r) the algebra Λ(n,r) is piecewise hereditary, so the bounded derived category D b (Λ(n,r)) is equivalent to the bounded derived category of a hereditary abelian category H\mathcal H as triangulated category.  相似文献   

14.
It is proved that for every positive integers k, r and s there exists an integer n = n(k,r,s) such that every k‐connected graph of order at least n contains either an induced path of length s or a subdivision of the complete bipartite graph Kk,r. © 2004 Wiley Periodicals, Inc. J Graph Theory 45: 270–274, 2004  相似文献   

15.
The central observation of this paper is that if εn random arcs are added to any n‐node strongly connected digraph with bounded degree then the resulting graph has diameter 𝒪(lnn) with high probability. We apply this to smoothed analysis of algorithms and property testing. Smoothed Analysis: Recognizing strongly connected digraphs is a basic computational task in graph theory. Even for digraphs with bounded degree, it is NL‐complete. By XORing an arbitrary bounded degree digraph with a sparse random digraph R ∼ 𝔻n,ε/n we obtain a “smoothed” instance. We show that, with high probability, a log‐space algorithm will correctly determine if a smoothed instance is strongly connected. We also show that if NL ⫅̸ almost‐L then no heuristic can recognize similarly perturbed instances of (s,t)‐connectivity. Property Testing: A digraph is called k‐linked if, for every choice of 2k distinct vertices s1,…,sk,t1,…,tk, the graph contains k vertex disjoint paths joining sr to tr for r = 1,…,k. Recognizing k‐linked digraphs is NP‐complete for k ≥ 2. We describe a polynomial time algorithm for bounded degree digraphs, which accepts k‐linked graphs with high probability, and rejects all graphs that are at least εn arcs away from being k‐linked. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2007  相似文献   

16.
This thesis deals with a certain set function called entropy and its ápplications to some problems in classical Fourier analysis. For a set S [0, 1/e] the entropy of S is defined by E(S) = infSkIk,Ik intervals Σk | Ik | log(1/|Ik|). We begin by using notions related to entropy in order to investigate the maximal operator MΩ given by MΩ(f)(x) = supr>0(1/rn) ∫|t| ≤r Ω(t) |f(x + t)| dt, f ε L1(Rn), where Ω is a positive function, homogeneous of degree 0, and satisfying a certain weak smoothness condition. Then the set function entropy is investigated, and certain of its properties are derived. We then apply these to solve various problems in differentiation theory and the theory of singular integrals, deriving in the process, entropic versions of the theorems of Hardy and Littlewood and Calderón and Zygmund.  相似文献   

17.
One of the basic results in graph colouring is Brooks' theorem [R. L. Brooks, Proc Cambridge Phil Soc 37 ( 4 ) 194–197], which asserts that the chromatic number of every connected graph, that is not a complete graph or an odd cycle, does not exceed its maximum degree. As an extension of this result, Dirac [G. A. Dirac, Proc London Math Soc 7(3) ( 7 ) 161–195] proved that every k‐colour‐critical graph (k ≥ 4) on nk + 2 vertices has at least ½((k ? 1) n + k ? 3) edges. The aim of this paper is to prove a list version of Dirac's result and to extend it to hypergraphs. © 2002 Wiley Periodicals, Inc. J Graph Theory 39: 165–177, 2002; DOI 10.1002/jgt.998  相似文献   

18.
In this paper, we derive a new explicit formula for r 32(n), where r k(n) is the number of representations of n as a sum of k squares. For a fixed integer k, our method can be used to derive explicit formulas for r 8k (n). We conclude the paper with various conjectures that lead to explicit formulas for r 2k (n), for any fixed positive integer k > 4.  相似文献   

19.
In this article we study the n‐existential closure property of the block intersection graphs of infinite t‐(v, k, λ) designs for which the block size k and the index λ are both finite. We show that such block intersection graphs are 2‐e.c. when 2?t?k ? 1. When λ = 1 and 2?t?k, then a necessary and sufficient condition on n for the block intersection graph to be ne.c. is that n?min{t, ?(k ? 1)/(t ? 1)? + 1}. If λ?2 then we show that the block intersection graph is not ne.c. for any n?min{t + 1, ?k/t? + 1}, and that for 3?n?min{t, ?k/t?} the block intersection graph is potentially but not necessarily ne.c. The cases t = 1 and t = k are also discussed. © 2011 Wiley Periodicals, Inc. J Combin Designs 19: 85–94, 2011  相似文献   

20.
We study hypersurfaces in the Lorentz-Minkowski space \mathbbLn+1{\mathbb{L}^{n+1}} whose position vector ψ satisfies the condition L k ψ = + b, where L k is the linearized operator of the (k + 1)th mean curvature of the hypersurface for a fixed k = 0, . . . , n − 1, A ? \mathbbR(n+1)×(n+1){A\in\mathbb{R}^{(n+1)\times(n+1)}} is a constant matrix and b ? \mathbbLn+1{b\in\mathbb{L}^{n+1}} is a constant vector. For every k, we prove that the only hypersurfaces satisfying that condition are hypersurfaces with zero (k + 1)th mean curvature, open pieces of totally umbilical hypersurfaces \mathbbSn1(r){\mathbb{S}^n_1(r)} or \mathbbHn(-r){\mathbb{H}^n(-r)}, and open pieces of generalized cylinders \mathbbSm1(r)×\mathbbRn-m{\mathbb{S}^m_1(r)\times\mathbb{R}^{n-m}}, \mathbbHm(-r)×\mathbbRn-m{\mathbb{H}^m(-r)\times\mathbb{R}^{n-m}}, with k + 1 ≤ m ≤ n − 1, or \mathbbLm×\mathbbSn-m(r){\mathbb{L}^m\times\mathbb{S}^{n-m}(r)}, with k + 1 ≤ nm ≤ n − 1. This completely extends to the Lorentz-Minkowski space a previous classification for hypersurfaces in \mathbbRn+1{\mathbb{R}^{n+1}} given by Alías and Gürbüz (Geom. Dedicata 121:113–127, 2006).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号