首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用磁控溅射法,采用亚分子分层掺杂技术交替溅射Co靶和ZnO靶,在Si衬底上制备了不同氢氩流量比的H:ZCO薄膜样品,研究了氢氩流量比对薄膜结构特性和磁学性能的影响。所制备的薄膜样品具有c轴择优取向。由于H对表面和界面处悬挂键的钝化作用,随H2流量比的增加,薄膜的择优取向变差。磁性测量结果显示,薄膜样品的铁磁性随着氢氩流量比的增大而增强。XPS结果表明,随着H含量的增大,金属态Co团簇的相对含量逐渐增加,而氧化态Co离子的相对含量逐渐减小。H:ZCO样品中的铁磁性可能来源于Co金属团簇,H的掺入促使ZnO中的Co离子还原成Co金属团簇,从而增强了薄膜样品的室温铁磁性。  相似文献   

2.
《Current Applied Physics》2019,19(10):1136-1144
Mg, Co doped and (Mg, Co) co-doped CdS thin films were prepared using chemical spray pyrolysis method. It is observed from the X-ray diffraction study that the deposited film exhibit cubic phase of CdS with preferred orientation along the (111) plane and incorporation of Mg and Co has been confirmed form energy dispersive analysis and XPS analysis as well. The doped and codoped CdS thin films exhibit 1LO and 2LO vibrations as confirmed by Raman spectrum. The core level XPS spectra ensures the incorporation of doping elements precisely. The morphological variations due to the incorporation of Co and Mg in CdS thin films have been observed by FE-SEM. The particle sizes and crystalline nature have been revealed from HRTEM images and corresponding SAED patterns. The co-doped CdS thin films show a significant shift blue in absorption spectrum. Improved magnetic properties have been observed for the co-doped CdS thin films.  相似文献   

3.
吴艳南  徐明  吴定才  董成军  张佩佩  纪红萱  何林 《物理学报》2011,60(7):77505-077505
采用溶胶-凝胶旋涂法在玻璃衬底上制备了Co,Sn掺杂ZnO系列薄膜.通过金相显微镜和X射线衍射(XRD)研究了Co与Sn掺杂对薄膜的表面形貌和微结构的影响.XRD结果表明,所有ZnO薄膜样品都存在(002)择优取向,特别Sn单掺ZnO薄膜的c轴择优取向最为显著,而且晶粒尺寸最大.XPS测试表明样品中Co和Sn的价态分别为2+和4+,证实Co2+,Sn4+进入了ZnO的晶格.室温光致发光谱(PL)显示在所有的样品中都有较强的蓝光双峰发射和较弱的绿光发 关键词: ZnO薄膜 溶胶-凝胶 掺杂 光致发光  相似文献   

4.
Pure and Cobalt doped zinc oxide were deposited on glass substrate by Ultrasonic spray method. Zinc acetate dehydrate, Cobalt chloride, 4-methoxyethanol and monoethanolamine were used as a starting materials, dopant source, solvent and stabilizer, respectively. The ZnO samples and ZnO:Co with Cobalt concentration of 2 wt.% were deposited at 300, 350 and 400 °C. The effects of substrate temperature and presence of Co as doping element on the structural, electrical and optical properties were examined. Both pure and Co doped ZnO samples are (0 0 2) preferentially oriented. The X-ray diffraction results indicate that the samples have polycrystalline nature and hexagonal wurtzite structure with the maximum average crystallite size of ZnO and ZnO:Co were 33.28 and 55.46 nm. An increase in the substrate temperature and presence doping the crystallinity of the thin films increased. The optical transmittance spectra showed transmittance higher than 80% within the visible wavelength region. The band gap energy of the thin films increased after doping from 3.25 to 3.36 eV at 350 °C.  相似文献   

5.
Transparent conductive Co-doped ZnO thin films were deposited by ultrasonic spray technique. Conditions of preparation have been optimized to get good quality. A set of cobalt (Co)-doped ZnO (between 0 and 3 wt%) thin films were grown on glass substrate at 350 °C. The thin films were annealed at 500 °C for improvement of the physical properties. Nanocrystalline films with hexagonal wurtzite structure and a strong (0 0 2) preferred orientation were obtained. The maximum value of grain size G = 63.99 nm is attained with undoped ZnO film. The optical transmissions spectra showed that both the undoped and doped ZnO films have transparency within the visible wavelength region. The band gap energy decreased after doping from 3.367 to 3.319 eV when Co concentration increased from 0 to 2 wt% with slight increase of electrical conductivity of the films from 7.71 to 8.33 (Ω cm)−1. The best estimated structure, optical and electrical results are achieved in Co-doped ZnO film with 2 wt%.  相似文献   

6.
Polycrystalline samples of(Zn, Co) co-doped SnO2 nanoparticles were prepared using a co-precipitation method. The influence of(Zn, Co) co-doping on electrical, dielectric, and magnetic properties was studied. All of the(Zn, Co) co-doped SnO2 powder samples have the same tetragonal structure of SnO2. A decrease in the dielectric constant was observed with the increase of Co doping concentration. It was found that the dielectric constant and dielectric loss values decrease, while AC electrical conductivity increases with doping concentration and frequency. Magnetization measurements revealed that the Co doping SnO2 samples exhibits room temperature ferromagnetism. Our results illustrate that(Zn, Co) co-doped SnO2 nanoparticles have an excellent dielectric, magnetic properties, and high electrical conductivity than those reported previously, indicating that these(Zn, Co) co-doped SnO2 materials can be used in the field of the ultrahigh dielectric material, high frequency device, and spintronics.  相似文献   

7.
In this paper, the effect of bismuth doping on the structural, morphological, optical and electrical properties of Cu2ZnSnS4 (CZTS) films has been investigated. The undoped and bismuth doped CZTS films (0, 0.5, 1, 1.5 and 2 mol%) were deposited on glass substrates by solution based method. The XRD result shows a significant improvement in the crystallinity of the films with increase in bismuth concentration. The Raman spectra of the films show the dominant peak at 334 cm–1 corresponding to A1 vibrational mode of CZTS kesterite phase. The FESEM micrographs of the films show an enhancement in the grain size and densification with the addition of bismuth ion concentration. The optical bandgap of the films was found to vary (1.59–1.40 eV) with the doping of bismuth ions. The IV characteristics indicate twofold increment in the photoconductivity for the bismuth doped CZTS films under 100 mW/cm2 illumination suggesting their potential application in photovoltaic devices. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

8.
A non-linear variation of bandgap energy with Co doping is observed in sputter deposited Co-doped TiO2 thin films. This peculiar behavior is explained on the basis of mechanical stress in the films together with spin polarization due to s,p-d exchange interaction between the localized Co 3d electrons and delocalized electrons. Quantitative analyses of mechanical stress and grain boundary barrier potential due to spin polarization are performed from the below bandgap absorption tail. Furthermore, anomalous variations in both the refractive indices and extinction coefficients with Co doping are noted and are explained on the basis of ab-initio calculations based on density functional theory.  相似文献   

9.
The structure of the Co thin films on Pd(1 1 1) and the effect of the CO adsorption on Co thin films were studied by Co K-edge surface X-ray absorption fine structure (XAFS). The polarization dependences of the X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra indicate that Co thin films grow in the fcc stacking mode on Pd(1 1 1) up to 12 ML. The analysis of the nearest neighbor shell shows little mechanical strain at the interface, indicating that Co atom does not grow pseudomorphically on Pd(1 1 1). There is no alloy-like structure at the interface. CO adsorption causes no structural change of the Co thin films but modifies the Co surface electronic state. These structural studies provide deep insight in the magnetic property of the Co thin films on Pd(1 1 1).  相似文献   

10.
过渡金属硫化物黄铁矿是一种优异的光伏材料,掺杂改性是提高黄铁矿光伏性能的一种重要手段。为了探究不同Co掺杂量对黄铁矿的晶体结构和吸光性能的影响,采用热硫化法在360℃时制备出了纳-微米黄铁矿样品。利用X射线衍射(XRD)和多功能场发射扫描式电子显微镜(FESEM)分析了样品的晶体结构、形貌特征和晶粒尺寸;利用能谱仪(EDS)分析了样品的化学成分,并通过紫外-可见-近红外分光光度计(UV-Vis-NIR)表征了样品的光吸收性能和禁带宽度的变化。结果表明,掺Co并未改变黄铁矿的立方晶型结构,但与未掺杂黄铁矿相比,样品结晶度变差,晶粒发生团聚,尺寸在1~1.45 μm范围内;掺Co量的增加会导致晶粒尺度略微减小,但影响不大。EDS检测表明,实际样品的掺杂并不均匀,当掺Co量小于7 at%时,测试值小于名义掺杂量;而当掺Co量大于7 at%时,Co易发生富集。S/(Fe+Co)的比值在1.92~2.05范围内,表明样品内部的点缺陷数量的变化。反射光谱表明制备样品的禁带宽度Eg在0.57~0.72 eV之间。禁带宽度Eg随着掺杂量的增加,呈现出先减小(Co 3 at%)后增加(Co 5~9 at%)的趋势。掺Co量从0%增加3 at%时,样品内部产生的点缺陷数目增多,形成的附加能级会导致禁带宽度Eg窄化;随着掺Co量进一步增加,S/(Fe+Co)比值更接近于2,晶体结构更趋完善,Fe空位或S间隙点缺陷比率降低,禁带宽度Eg趋近于本征特征,会导致禁带宽度Eg宽化;另外,随着Co含量的提高,物相中微量的CoS2相增多,亦会导致较高掺Co量样品的禁带宽度有所宽化。掺Co量在9 at%的样品的禁带宽度为0.72 eV,大于同温度条件下未掺杂样品的禁带宽度0.65 eV,禁带宽度的宽化在理论上有利于提高样品的光电转换效率。  相似文献   

11.
CrN, CrSiN and CrCuN films were deposited by DC magnetron reactive sputtering with hot pressed pure Cr, CrSi, and CrCu targets, respectively. As substrate bias increased from −50 V to −200 V, the preferred orientation of CrN films changed from (1 1 1) to (2 0 0). And the Si doping did not change this condition. However, the Cu doping films kept (2 0 0) orientation all along. CrN films presented typical columnar structure, and the alloying of Si and Cu could restrain columnar growth leading to dense structure. The CrSiN film was composed of nanocrystallites distributed in amorphous Si3N4, while no amorphous phase existed in CrCuN films.  相似文献   

12.
Rutile-type Co x Ti1???x O2???d laser deposited on alumina substrate was studied after 57Co doping, using emission Mössbauer spectroscopy. It was found that although under certain conditions (i.e., which result in high conductivity) the thin rutile layers showed magnetooptical effect, the Mössbauer probe did not reveal any magnetic splitting, but showed paramagnetic Co3?+? (Fe3?+?) in the films of low electric resistance. This supports that these samples have carrier induced magnetism which is also connected to the defect structure of the rutile films.  相似文献   

13.
用射频磁控溅射结合传统退火的方法制备LiCo0.8M0.2O2 (M=Ni,Zr)阴极薄膜.X射线衍射、拉曼光谱、扫描电子显微镜等手段表征了不同掺杂的LiCo0.8M0.2O2薄膜.结果显示,700℃退火的LiCo0.8M0.2O2薄膜具有类似α-NaFeO2的层状结构.通过对不同掺杂锂钴氧阴极的全固态薄膜锂电池Li/LiPON/LiCo0.8M0.2O2的电化学性能研究表明,电化学活性元素Ni的掺杂使全固态电池具有更大的放电容量(56μAh/cm2μm),而非电化学活性元素Zr的掺杂使全固态电池具有更好的循环稳定性.  相似文献   

14.
The influences of Co doping on the anatase-to-rutile transformation of TiO2 thin films have been investigated by Raman spectroscopy and X-ray diffraction. Raman spectra and XRD patterns for the samples of various Co concentrations present a clear evolution of TiO2 with different anatase-to-rutile ratios. The fraction of rutile phase increases gradually with increasing Co contents. When Co content exceeds 7 mol%, anatase phase is not detected in the samples. The results may be related to the oxygen vacancies, which are introduced by Co doping. According to the Adachi model, optical constant was extracted by spectroscopic ellipsometry. It is found that the refractive index n increases with increasing Co content from 2.29 to 2.4, and that the optical band gap decreases and varies with increment of Co content between 3.6 and 3.38 eV. This may be related to the changes in film density and band gap tailed due to the Co doping.  相似文献   

15.
本文通过在Heusler合金Mn2NiSn中掺杂Ni、Co元素对其结构与磁性交换作用变化进行了研究。结果表明,在Mn2-xNi1+xSn体系中,随着Ni逐渐替代Mn,合金结构会由立方XA逐渐向L21结构转变。由于Ni原子相对于Mn原子具有较小的原子半径,Ni2MnSn相对于Mn2NiSn体积大概收缩1.2%。Mn含量的减少使得最近邻的Mn(A)-Mn(B)间反铁磁交换作用减弱,导致居里温度由x = 0时的519 K接近线性的降低到x=1时的340 K。当用Co元素替换部分Mn元素时,即Mn2-yCoyNiSn中,复杂的原子占位使得Mn(A)-Mn(B)交换作用降低的同时伴随着Co-Mn之间铁磁交换作用的增强,两者交换作用的竞争导致居里温度先降低后升高,临界点出现在y = 0.3处。在Mn2Ni1-zCozSn体系中,当Co替代部分Ni时,由于Ni-Mn之间的交换作用小于Co-Mn之间的交换作用,交换作用的增强导致居里温度随着Co含量的增加逐渐升高。室温下的饱和磁化强度也随着掺杂量的增大逐渐增大。  相似文献   

16.
The hydrogen doped ZnO (ZnO:H) thin films were deposited on quartz glass substrates by radio frequency magnetron sputtering. The doping characteristics of ZnO:H thin films with varied hydrogen flow ratio were investigated. At low hydrogen flow ratio (H2/(H2+Ar)≤0.02), the ZnO:H thin films exhibited dominant (002) peaks from X-ray diffraction and the lattice constants became smaller. The particles were mainly a columnar structure. The particles’ size became smaller, and the island-like structure appeared on the thin films surface. In addition, the low resistivity properties of ZnO:H thin films was ascribed to the increase of the carriers concentration and carriers mobility; When the hydrogen flow ratio was more than 0.02 (M≥0.02), two absorption bands at 1400–1800 cm?1 and 3200–3900 cm?1 were observed from the FT-IR spectra, which indicated that the ZnO:H thin films had typical Zn–H bonding, O–H bonding (hydroxyl), and Zn–H–O bonding (like-hydroxyl). The scanning electron microscope (SEM) results show that a large number of hydroxyl agglomeration formed an island-like structure on the thin films surface. The absorption peak at about 575 cm?1 in the Raman spectra indicated that oxygen vacancies (VO) defects were produced in the process of high hydrogen doping. In this condition, the low resistivity properties of ZnO:H thin films were mainly due to the increasing electron concentration resulted from VO. Meanwhile, the Raman absorption peaks at approximately 98 cm?1 and 436 cm?1 became weaker, and the (002) XRD diffraction peak quenched and the lattice constants increased, which shows that the ZnO:H thin films no longer presented a typical ZnO hexagonal wurtzite structure. With the increasing of hydrogen flow ratio, the optical transmittance of ZnO:H thin films in the ultraviolet band show a clear Burstein–Moss shift effect, which further explained that electron concentration was increased due to the increasing VO with high hydrogen doping concentration. Moreover, the optical reflectance of the thin films decreased, indicating the higher roughness of the films surface. It was noteworthy that etching effect of H plasma was obvious in the process of heavy hydrogen doping.  相似文献   

17.
宋红强  王勇  颜世申  梅良模  张泽 《物理学报》2008,57(7):4534-4538
利用磁控溅射仪制备了高Co含量的Ti1-xCoxO2磁性半导体样品,并对样品分别在200℃,300℃和400℃进行退火研究.使用透射电子显微镜(TEM)对退火前后样品的结构进行表征,并用X射线光电子能谱(XPS)对退火前后样品中Co元素的化学状态进行鉴定.结果表明高Co含量的Ti1-xCoxO2磁性半导体处于一种亚稳状态,300℃以上的温度便使其结构与成分发生巨大变化.利用超导量子干涉磁强计(SQUID)测量退火前后样品的磁特性,结果表明样品的磁性有了明显的变化,这源于磁性产生的不同机理. 关键词: 磁性半导体 退火 磁性  相似文献   

18.
Ba0.70Sr0.30TiO3 (BST) thin films doped by Co (BSTC) are fabricated by sol-gel method on a Pt/Ti/SiO2/Si substrate. A strong correlation is observed among the microstructure, dielectric, ferroelectric, ferromagnetic properties and Co concentration. The dielectric constant of BST thin films can be tailored from 343 to 119 by manipulating the Co concentration. The dielectric loss of BSTC thin films are still kept below 0.020 and the tunability is above 30% at a dc-applied electric field of 500 kV/cm. With increasing Co doping up to 10 mol%, the coexistence of ferromagnetism and ferroelectrics is found. Suitable dielectric constant, low-dielectric loss, and high tunability of this kind of thin films can be useful for potential tunable applications.  相似文献   

19.
Transparent conducting ZnO and Al doped ZnO thin films were deposited on glass substrate by ultrasonic spray method. The thin films with concentration of 0.1 M were deposited at 350 °C with 2 min of deposition time. The effects of ethanol and methanol solution before and after doping on the structural, optical and electrical properties were examined. The DRX analyses indicated that ZnO films have nanocrystalline nature and hexagonal wurtzite structure with (1 0 0) and (0 0 2) preferential orientation corresponding to ZnO films resulting from methanol and ethanol solution, respectively. The crystallinity of the thin films improved with methanol solution after doping to (0 0 2) oriented. All films exhibit an average optical transparency about 90%, in the visible range. The band gaps values of ZnO thin films are increased after doping from 3.10 to 3.26 eV and 3.27 to 3.30 eV upon Al doping obtained by ethanol and methanol solution, respectively. The electrical conductivity increase from 7.5 to 15.2 (Ω cm)−1 of undoped to Al doped ZnO thin films prepared by using ethanol solution. However, for the methanol solution; the electrical conductivity of the film is stabilized after doping.  相似文献   

20.
Thin films of zinc oxide (ZnO) were deposited on cleaned glass substrates by chemical spray pyrolysis technique using Zn(CH3COO)2 as precursor solution. Also, aluminium-doped thin films of ZnO were prepared by using AlCl3 as doping solution for aluminium. The dopant concentration [Al/Zn atomic percentage (at%)] was varied from 0 to 1.5 at% in thin films of ZnO prepared in different depositions. Structural characterization of the deposited films was performed with X-ray diffraction (XRD) studies. It confirmed that all the films were of zinc oxide having polycrystalline nature and possessing typical hexagonal wurtzite structure with crystallite size varying between 100.7 and 268.6 nm. The films exhibited changes in relative intensities and crystallite size with changes in the doping concentration of Al. The electrical studies established that 1 at% of Al-doping was the optimum for enhancing electrical conduction in ZnO thin films and beyond that the distortion caused in the lattice lowered the conductivity. The films also exhibited distinct changes in their optical properties at different doping concentrations, including a blue shift and slight widening of bandgap with increasing Al dopant concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号