首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hybrid organic/inorganic composite polymer electrolyte membranes based on a poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) grafted membrane and varying concentrations of zeolite were investigated for application in proton exchange membrane fuel cells (PEMFC). A proton conducting comb copolymer consisting of poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) backbone and poly(styrene sulfonic acid) (PSSA) side chains, i.e. P(VDF‐co‐CTFE)‐g‐PSSA (graft copolymer) with 47 wt% of PSSA was synthesized using atom transfer radical polymerization (ATRP) and solution blended with zeolite. Upon incorporation of zeolite, the symmetric stretching band of both SO group (1169 cm?1) and the ? OH group (3426 cm?1) shifted to lower wavenumbers. The shift in these FT‐IR spectra suggests that the zeolite particles strongly interact with the sulfonic acid groups of PSSA chains. When the weight percent of zeolite 5A is above 7%, the proton conductivity at room temperature was reduced to 0.011 S/cm. The water uptake of the composite membranes decreased from 234 to 125% with an increase of the zeolite 5A weight percent to 10 wt%. The decrease in water uptake is likely a result of the decrease in the number of available water absorption sites because of the hydrogen bonding interactions between the zeolite particles and the graft copolymer matrix. This behavior is successfully investigated by scanning electron microscopy (SEM). The results of thermal gravimetric analysis (TGA) also showed that all the membranes were stable up to 300°C. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The sulfonated poly(ether ether ketone sulfone) (SPEEKS)/heteropolyacid (HPA) composite membranes with different HPA content in SPEEKS copolymers matrix with different degree of sulfonation (DS) were investigated for high temperature proton exchange membrane fuel cells. Composite membranes were characterized by Fourier transfer infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). FTIR band shifts suggested that the sulfonic acid groups on the copolymer backbone strongly interact with HPA particles. SEM pictures showed that the HPA particles were uniformly distributed throughout the SPEEKS membranes matrix and particle sizes decreased with the increment of copolymers' DS. The holes were not found in SPEEKS‐4/HPA30 (consisting of 70% SPEEKS copolymers with DS = 0.8 and 30% HPA) composite membrane after composite membranes were treated with boiling water for 24 h. Thermal stabilities of the composite membranes were better than those of pure sulfonated copolymers membranes. Although the composite membranes possessed lower water uptake, it exhibited higher proton conductivity for SPEEKS‐4/HPA30 especially at high temperature (above 100 °C). Its proton conductivity linearly increased from 0.068 S/cm at 25 °C to 0.095 S/cm at 120 °C, which was higher than 0.06 S/cm of Nafion 117. In contrast, proton conductivity of pure SPEEKS‐4 membrane only increased from 0.062 S/cm at 25 °C to 0.078 S/cm at 80 °C. At 120 °C, proton conductivity decreased to poor 0.073 S/cm. The result indicated that composite membranes exhibited high proton conductivity at high temperature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1967–1978, 2006  相似文献   

3.
The viability of using composite membranes of heteropolyacid (HPA)/polysulfone (PSF), HPA/sulfonated polysulfone (SPSF) for use in proton exchange membrane fuel cells (PEMFC) was investigated. PSF and its sulfonated polymer, SPSF was solution‐blended with phosphotungstic acid, a commercially available HPA. Fourier transform infrared (FTIR) spectroscopy of the HPA–40/SPSF composite exhibited band shifts showing a possibility of intermolecular hydrogen bonding interaction between the HPA additive and the sulfonated polymer. The composite membranes exhibited improved mechanical strength and low water uptake. The conductivity of the composite membrane, HPA–40/SPSF, consisting of 40 wt % HPA and 60 wt % SPSF [with a degree of Sulfonation (DS) of 40%] exhibited a conductivity 0.089 S/cm at room temperature that linearly increased upto 0.14 S/cm at 120 °C, whereas the widely used commercial membrane Nafion 117, exhibited a room temperature conductivity of 0.1 S/cm that increased to only 0.12 S/cm at 120 °C. In contrast, the composite of HPA–40/PSF exhibited a proton conductivity of 0.02 S/cm at room temperature that increased only to 0.07 S/cm at a temperature of 100 °C. The incorporation of HPA into SPSF not only rendered the membranes suitable for elevated temperature operation of PEMFC but also provides an inexpensive alternative compared to Nafion. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1538–1547, 2005  相似文献   

4.
本文介绍了用于直接甲醇燃料电池(DMFCs)的质子交换膜(PEMs)的工作原理与性能要求。讨论了影响DMFCs国PEMs的甲醇渗透性能的因素。综述了Nation、改性Nafion膜以及其它新品种膜的研究进展。  相似文献   

5.
In this work, the functionalization of polystyrene‐b‐poly(butadiene)‐b‐polystyrene triblock copolymer (SBS) with vinylbenzyl chloride and benzoyl peroxide (BPO) or α,α′‐azo‐bis‐isobutyronitrile (AIBN) as free radical initiators was reported. The functionalization degree (FD), calculated by 1H NMR spectroscopy and confirmed by elemental analysis, was highly tunable (from 4 to 10 mol %) and positively correlated to the starting percentage of radical initiator. More specifically, at the same initiator molar percentage grafting efficiency is higher using BPO rather than AIBN. Quaternization reaction of the grafted benzyl chloride groups with the bifunctional tertiary amine 1,4‐diazabicyclo[2.2.2]octane (Dabco) led to a chemically and thermally stable homogeneous anion‐exchange membrane. Electrochemical parameters were evaluated for Dabco‐quaternized grafted copolymers having different FDs, and compared with a commercial Tokuyama benchmark membrane. Experimental data showed a positive correlation between FD and both water swelling and ionic conductivity. Best trade‐off between ionic conductivity and water swelling was found for membrane having FD 9.1 mol %, which conductivity is comparable with the Tokuyama benchmark one and water uptake is only slightly higher. The results are discussed based on the molecular parameters with particular reference to ionic content and distribution. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
A series of block copoly(arylene ether)s containing pendant superacid groups were synthesized, and their properties were investigated for fuel cell applications. Two series of telechelic oligomers, iodo‐substituted oligo(arylene ether ketone)s and oligo(arylene ether sulfone)s, were synthesized. The degree of oligomerization and the end groups were controlled by changing the feed ratio of the monomers. The nucleophilic substitution polymerization of the two oligomers provided iodo‐substituted precursor block copolymers. The iodo groups were converted to perfluorosulfonic acid groups via the Ullmann coupling reaction. The high degree of perfluorosulfonation (up to 83%) was achieved by optimizing the reaction conditions. Tough and bendable membranes were prepared by solution casting. The ionomer membranes exhibited characteristic hydrophilic/hydrophobic phase separation with large hydrophilic clusters (ca. 10 nm), which were different from that of our previous random copolymers with similar molecular structure. The block copolymer structure was found to be effective in improving the proton‐conducting behavior of the superacid‐modified poly(arylene ether) ionomer membranes without increasing the ion exchange capacity (IEC). The highest proton conductivity was 0.13 S/cm at 80 °C, 90% relative humidity, for the block copolymer ionomer membrane with IEC = 1.29 mequiv/g. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
8.
9.
10.
本文根据聚合物电解质膜燃料电池操作温度、使用的电解质和燃料的不同,将其分为高温质子交换膜燃料电池、低温质子换膜燃料电池、直接甲醇燃料电池和阴离子交换膜燃料电池,综述了它们所用电解质膜的最新进展.第一部分简要介绍了这4种燃料电池的优点和不足.第二部分首先介绍了Nafion膜的结构模型,并对平行柱状纳米水通道模型在介观尺度上进行了修正;接着分别对应用于不同燃料电池的改性膜的改性思路作了分析;最后讨论了用于不同燃料电池的新型质子交换膜的研究,同时列举了性能突出的改性膜和新型质子交换膜.第三部分介绍了阴离子交换膜的研究现状.第四部分对未来聚合物电解质膜的研究作了展望.  相似文献   

11.
Novel aromatic polymers bearing polar pyridine units in the main chain and side chain crosslinkable hydroxyl and propargyl groups have been successfully synthesized. The polymers have been investigated in terms of their critical properties related to their application in high temperature polymer electrolyte membrane fuel cells, such as doping ability, mechanical properties, and thermal stability. Crosslinked membranes were prepared by direct crosslinking of hydroxyl side chain groups with decafluorobiphenyl used for the first time as a crosslinking agent. However, further functionalization of hydroxyl groups to the propargyl derivative has also led to crosslinked polymers after thermal curing. Both types of crosslinked membranes exhibited higher glass transition temperatures as well as lower doping levels when doped in phosphoric acid compared with the non crosslinked analogs, confirming the formation of a successfully crosslinked network. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
Sulfonated poly(ether sulfone)s containing binaphthyl units (BNSHs) were successfully prepared for fuel cell application. BNSHs, which have very simple structures, were easily synthesized by postsulfonation of poly(1,1′‐dinaphthyl ether phenyl sulfone)s and gave tough, flexible, and transparent membranes by solvent casting. The BNSH membranes showed low water uptake compared to a typical sulfonated poly(ether ether sulfone) (BPSH‐40) membrane with a similar ion exchange capacity (IEC) value and water insolubility, even with a high IEC values of 3.19 mequiv/g because of their rigid and bulky structures. The BNSH‐100 membrane (IEC = 3.19 mequiv/g) exhibited excellent proton conductivity, which was comparable to or even higher than that of Nafion 117, over a range of 30–95% relative humidity (RH). The excellent proton conductivity, especially under low RH conditions, suggests that the BNSH‐100 membrane has excellent proton paths because of its high IEC value, and water insolubility due to the high hydrophobicity of the binaphthyl structure. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5827–5834, 2009  相似文献   

13.
Three series of fully aromatic ionomers with naphthalene moieties and pendant sulfobenzoyl side chains were prepared via K2CO3 mediated nucleophilic aromatic substitution reactions. The first series consisted of poly(arylene ether)s prepared by polycondensations of 2,6‐difluoro‐2′‐sulfobenzophenone (DFSBP) and 2,6‐dihydroxynaphthalene or 2,7‐dihydroxynaphthalene (2,7‐DHN). In the second series, copoly(arylene ether nitrile)s with different ion‐exchange capacities (IECs) were prepared by polycondensations of DFSBP, 2,6‐difluorobenzonitrile (DFBN), and 2,7‐DHN. In the third series, bis(4‐fluorophenyl)sulfone was used instead of DFBN to prepare copoly(arylene ether sulfone)s. Thus, all the ionomers had sulfonic acid units placed in stable positions close to the electron withdrawing ketone link of the side chains. Mechanically strong proton‐exchange membranes with IECs between 1.1 and 2.3 meq g−1 were cast from dimethylsulfoxide solutions. High thermal stability was indicted by high degradation temperatures between 266 and 287 °C (1 °C min−1 under air) and high glass transition temperatures between 245 and 306 °C, depending on the IEC. The copolymer membranes reached proton conductivities of 0.3 S cm−1 under fully humidified conditions. At IECs above ∼1.6 meq g−1, the copolymer membranes reached higher proton conductivities than Nafion® in the range between −20 and 120 °C. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Water sorption properties, proton NMR spectra, and diffusion of water and protons in poly(vinylidene fluoride)-graft-polystyrene sulfonic acid (PVDF-g-PSSA) polymer electrolyte membranes were studied. Sorption curves for the membranes with different degrees of grafting in protonated and Na+ form were measured by equilibrating the membranes over saturated salt solutions. The membrane water content was found to be sensitive to changes in relative humidity (RH). The water/sulfonic acid ratio λ for the protonated samples was around 2 at 20% RH and increased to λ ∼ 30 at 100%. Proton NMR, pulsed field gradient proton NMR (PFG-NMR), and impedance measurements were made on membranes with different λ. In the proton NMR spectra only one peak was found, originating from the water in the membrane. The chemical shift of the peak was found to be dependent on the counterion and the water content. The water self-diffusion coefficients DH2O, measured by PFG-NMR, increased with degree of grafting and water content of the membranes. The proton conductivity and the calculated proton mobility decreased more steeply than the DH2O with decreasing water content. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2893–2900, 1999  相似文献   

15.
In this study, we proposed an innovative and versatile method for preparation of highly stable and conductive supported ionic liquid (IL) membranes for proton exchange fuel cell applications. Novel covalently supported dual acidic IL membranes were prepared by radiation induced grafting of 4-vinyl pyridine (4-VP) onto poly(ethylene-co-tetrafluoroethylene) (ETFE) film followed by post-functionalization via sequential treatments with 1,4-butane sultone and sulfuric acid to introduce pyridinium alkyl sulfonate/hydrogen sulfate moieties. The advantage of our approach lies in grafting polymers with highly reactive functional groups suitable for efficient post-sulfonation. The membranes displayed better swelling and mechanical properties compared to Nafion 112 despite having more than 3 times higher ion exchange capacity (IEC). The proton conductivity reached superior values to Nafion above 80 °C. Particularly, the membrane with ion exchange capacity of 3.41 displayed a proton conductivity of 259 mScm−1 at 95 °C. This desired conductivity value is attributed to the high IEC of the membranes as well as dissociation of the hydrophobic ETFE polymer and hydrophilic pyridinium alkyl sulfonate groups. Such appealing properties make the supported IL membranes promising for proton exchange membrane fuel cells (PEMFC).  相似文献   

16.
Sulfonated polyimides with tertiary nitrogen in the polymer backbone were synthesized with 1,4,5,8‐naphthalenetetracarboxylic dianhydride, 4,4′‐diaminobiphenyl 2,2′‐disulfonic acid, 2‐bis[4‐(4‐aminophenoxy)phenyl]hexafluoropropane, and diaminoacrydine hemisulfate. They were crosslinked with a series of dibromo alkanes to improve the hydrolytic stability. The crosslinked sulfonated polyimide films were characterized for their thermal stability, ion‐exchange capacity (IEC), water uptake, hydrolytic stability, and proton conductivity. All the sulfonated polyimides had good thermal stability and exhibited a three‐step degradation pattern. With an increase in the alkyl chain length of the crosslinker, IEC decreased as 1.23 > 1.16 > 1.06 > 1.01, and the water uptake decreased as 7.29 > 6.70 > 6.55 > 5.63. The order of the proton conductivity of the crosslinked sulfonated polyimides at 90 °C was as follows: polyimide crosslinked with dibromo butane (0.070) > polyimide crosslinked with dibromo hexane (0.055) > polyimide crosslinked with dibromo decane (0.054). The crosslinked polyimides showed higher hydrolytic stability than the uncrosslinked polyimides. Between the crosslinked polyimides, the hydrolytic stability decreased with an increase in the alkyl chain length of the crosslinker. The crosslinked and uncrosslinked sulfonated polyimides exhibited almost the same proton conductivities. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2370–2379, 2005  相似文献   

17.
A series of sulfonated poly(ether ether ketone)/monoethanolamine/adipic acid (SPEEK/MEA/AA) composite membranes are prepared and investigated to assess their possibility as proton exchange membranes in direct methanol fuel cells (DMFCs). A preliminary evaluation shows that introducing MEA and AA into SPEEK matrix decreases the thermal stability of membrane. However, the degradation temperatures are still above 260 °C, satisfying the requirement for fuel cell operation. Compared with the pure SPEEK membrane, the composite membranes exhibit not only lower water uptake and swelling ratios but also better mechanical property and oxidative stability. Noticeably, the methanol diffusion coefficient of the composite membranes decrease significantly from 3.15 × 10?6 to 0.76 × 10?6 cm2/s with increasing MEA and AA content, accompanied by only a small sacrifice in proton conductivity. Although both the methanol diffusion coefficient and the proton conductivity of composite membranes are lower than those of pure SPEEK and Nafion® 117 membranes, their selectivity (conductivity/methanol diffusion coefficient) are higher. In addition, the composite membranes show excellent stability in aqueous methanol solution. The good thermal and chemical stability, low swelling ratio, excellent mechanical property, low methanol diffusion coefficient, and high selectivity make the use of these composite membranes in DMFCs quite attractive. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2871–2879, 2007  相似文献   

18.
Multiblock sulfonated poly(arylene ether sulfone)s were synthesized to investigate the structural effects on their membrane properties. Three different types of sulfonated hydrophilic blocks were used; their structures possessed different acidity and local concentration of sulfonic acid groups. For the comparison between the block copolymers, a hydrophobic block with the same chemical structure and block length was used. The different acidities and local concentration were achieved using different sulfonation methods, such as postsulfonation and direct condensation with sulfonated monomers, and different monomers for preparing the hydrophilic block. The higher acidity and concentration of sulfonic acid groups resulted in higher proton conductivity under certain relative humidity conditions and phase separation as shown in the transmission electron microscopy analysis. The synthesized oligomers and polymers were well characterized, and the other physical properties were also investigated. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2947–2957  相似文献   

19.
This work presents a study of transport properties (proton conductivity, methanol permeability, and water uptake) and acid-base properties of commercial Nafion-112, -115, and -117 membranes modified with tetrapropylammonium (TPA) cations. In the interaction between TPA hydroxide and protons of sulfonate groups in the Nafion matrix, some of the protons are shown to be bound to sulfonate groups and do not participate in transport processes. These findings are confirmed by IR spectroscopy, acid-base titration, and data on proton conductivity of the modified membranes. Proton conductivity of the modified membranes is shown to be effectively described by a percolation model with parameters that agree with published data for commercial Nafion membranes. Based on these results, a model is proposed for the interaction of TPA cations with the sulfonate groups in Nafion membranes. According to this model, TPA cations form hydrophobic clusters in hydrophilic regions of the polymer matrix, thus preventing some of the protonated sulfonate groups from participating in transport processes.  相似文献   

20.
Methanol diffusion in two polymer electrolyte membranes, Nafion 117 and BPSH 40 (a 40% disulfonated wholly aromatic polyarylene ether sulfone), was measured using a modified pulsed field gradient NMR method. This method allowed for the diffusion coefficient of methanol within the membrane to be determined while immersed in a methanol solution of known concentration. A second set of gradient pulses suppressed the signal from the solvent in solution, thus allowing the methanol within the membrane to be monitored unambiguously. Over a methanol concentration range of 0.5–8 M, methanol diffusion coefficients in Nafion 117 were found to increase from 2.9 × 10−6 to 4.0 × 10−6 cm2 s−1. For BPSH 40, the diffusion coefficient dropped significantly over the same concentration range, from 7.7 × 10−6 to 2.5 × 10−6cm2 s−1. The difference in diffusion behavior is largely related to the amount of solvent sorbed by the membranes. Increasing the methanol concentration results in an increase in solvent uptake for Nafion 117, while BPSH 40 actually excludes the solvent at higher concentrations. In contrast, diffusion of methanol measured via permeability measurements (assuming a partition coefficient of 1) was lower (1.3 × 10−6 and 6.4 × 10−7 cm2 s−1 for Nafion 117 and BPSH 40 respectively) and showed no concentration dependence. The differences observed between the two techniques are related to the length scale over which diffusion is monitored and the partition coefficient, or solubility, of methanol in the membranes as a function of concentration. For the permeability measurements, this length is equal to the thickness of the membrane (178 and 132 μm for Nafion 117 and BPSH 40 respectively) whereas the NMR method observes diffusion over a length of approximately 4–8 μm. Regardless of the measurement technique, BPSH 40 is a greater barrier to methanol permeability at high methanol concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号