首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper is concerned with the equations of non‐stationary motion in 3D of heat‐conducting incompressible viscous fluids with temperature‐dependent viscosity. The conservation of internal energy includes the usual dissipation term. We prove the existence of a ‘weak solution with defect measure’ to the system of PDEs under consideration. Our method of proof is based on a regularization of the equations of conservation of momentum. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper we study the flow and heat transfer in a chemically reacting non‐linear fluid between two long horizontal parallel flat plates that are at different temperatures. The top plate is sheared, whereas the bottom plate is fixed. The fluid is modeled as a generalized power‐law fluid whose viscosity is also assumed to be a function of the concentration. The effects of radiation are neglected. The equations are made dimensionless and the boundary value problem is solved numerically; the velocity and temperature profiles are obtained for various dimensionless numbers. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

3.
We consider the initial boundary problem for a compressible non‐Newtonian fluid with density‐dependent viscosity. The local existence of strong solution is established that is based on some compatibility condition. Moreover, it is also proved that the solutions are to blow up, and the maximum norm of velocity gradients controls the possible break down of the strong solutions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The quenching problem is examined for a one‐dimensional heat equation with a non‐linear boundary condition that is of either local or non‐local type. Sufficient conditions are derived that establish both quenching and non‐quenching behaviour. The growth rate of the solution near quenching is also given for a power‐law non‐linearity. The analysis is conducted in the context of a nonlinear Volterra integral equation that is equivalent to the initial–boundary value problem. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
We study the asymptotic behaviour in time of incompressible non‐Newtonian fluids in the whole space assuming that initial data also belong to L1. Firstly, we consider the weak solution to the power‐law model with non‐zero external forces and we find the asymptotic behaviour in time of this solution in the same class of existence and uniqueness with p?. Secondly, we are interested in the asymptotic behaviour of weak solutions to the second grade model, and finally, we deal with the asymptotic behaviour in time of weak solutions to a simplified model of viscoelastic fluids of the Oldroyd type. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Energy bounds are derived for Dirichlet type boundary value problems for the Navier–Stokes and Stokes equations when a combination of the solution values initially and at a later time is prescribed. The bounds are obtained by means of a differential inequality and imply uniqueness and continuous data dependence of the solutions for a range of values of the parameter in the non‐standard auxiliary condition. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
The thermal convection in a layer of a third grade fluid is investigated, with viscosity being a general function of temperature. We develop a non‐linear stability analysis and prove that unconditional non‐linear stability criterion is achieved using a natural energy approach. This shows that, in some sense, the equations for a fluid of third grade are preferable to those for a fluid of second grade or a dipolar fluid. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we study the heat transfer in the fully developed flow of a viscoelastic fluid, a slag layer, down a vertical wall. A new constitutive relation for the stress tensor of this fluid is proposed, where the viscosity depends on the volume fraction, temperature, and shear rate. For the heat flux vector, we assume the Fourier's law of conduction with a constant thermal conductivity. The model is also capable of exhibiting normal stress effects. The governing equations are non‐dimensionalized and numerically solved to study the effects of various dimensionless parameters on the velocity, temperature, and volume fraction. The effect of the exponent in the Reynolds viscosity model is also discussed. The different cases of shear‐thinning and shear‐thickening, cooling and heating, are compared and discussed. The results indicate that the viscous dissipation and radiation (at the free surface) cause the temperature to be higher inside the flow domain. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
The paper deals with the time‐dependent linear heat equation with a non‐linear and non‐local boundary condition that arises when considering the radiation balance. Solutions are considered to be functions with values in V := {vH1(Ω)∣γvL5(∂Ω)}. As a consequence one has to work with non‐standard Sobolev spaces. The existence of solutions was proved by using a Galerkin‐based approximation scheme. Because of the non‐Hilbert character of the space V and the non‐local character of the boundary conditions, convergence of the Galerkin approximations is difficult to prove. The advantage of this approach is that we don't have to make assumptions about sub‐ and supersolutions. Finally, continuity of the solutions with respect to time is analysed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we present a parallel Newton–Krylov–Schwarz (NKS)‐based non‐linearly implicit algorithm for the numerical solution of the unsteady non‐linear multimaterial radiation diffusion problem in two‐dimensional space. A robust solver technology is required for handling the high non‐linearity and large jumps in material coefficients typically associated with simulations of radiation diffusion phenomena. We show numerically that NKS converges well even with rather large inflow flux boundary conditions. We observe that the approach is non‐linearly scalable, but not linearly scalable in terms of iteration numbers. However, CPU time is more important than the iteration numbers, and our numerical experiments show that the algorithm is CPU‐time‐scalable even without a coarse space given that the mesh is fine enough. This makes the algorithm potentially more attractive than multilevel methods, especially on unstructured grids, where course grids are often not easy to construct. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
This paper is concerned with the unique global solvability of a three‐dimensional (3‐D) non‐linear thermoelasticity system arising from the study of shape memory materials. The system consists of the coupled evolutionary problems of viscoelasticity with non‐convex elastic energy and non‐linear heat conduction with mechanical dissipation. The present paper extends the previous 2‐D existence result of the authors Reference [1] to 3‐D case. This goal is achieved by means of the Leray–Schauder fixed point theorem using technique based on energy arguments and DeGiorgi method. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
An efficient indirect boundary integral formulation for the evaluation of inelastic non‐Newtonian shear‐thinning flows at low Reynolds number is presented in this article. The formulation is based on the solution of a homogeneous Stokes flow field and the use of a particular solution for the nonlinear non‐Newtonian terms that yields the complete solution to the problem. Matrix multiplications are reduced in comparison to other means of handling nonlinear terms in boundary integral formulations such as the dual reciprocity method. The iterative solution of the nonlinear system of equations has been performed with a modified Newton‐Raphson method obtaining accurate results for values of the power law index as low as 0.4 without domain partitioning. Geometries such as Couette flow and a typical industrial polymer mixer have been analyzed with the proposed method obtaining good results with a reduction in computational cost compared with other equivalent formulations. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27:1610–1627, 2011  相似文献   

13.
In this paper we study the spatial behaviour of solutions of some problems for the dual‐phase‐lag heat equation on a semi‐infinite cylinder. The theory of dual‐phase‐lag heat conduction leads to a hyperbolic partial differential equation with a third derivative with respect to time. First, we investigate the spatial evolution of solutions of an initial boundary‐value problem with zero boundary conditions on the lateral surface of the cylinder. Under a boundedness restriction on the initial data, an energy estimate is obtained. An upper bound for the amplitude term in this estimate in terms of the initial and boundary data is also established. For the case of zero initial conditions, a more explicit estimate is obtained which shows that solutions decay exponentially along certain spatial‐time lines. A class of non‐standard problems is also considered for which the temperature and its first two time derivatives at a fixed time T are assumed proportional to their initial values. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
The asymptotic behaviour of a heat conduction problem involving a non‐linear heat source depending on the heat‐flux occurring in the extremum of a semi‐infinite slab is discussed. Conditions are given on the non‐linearity so as to accelerate the convergence of the solution to zero. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
The paper is devoted to the existence and uniqueness of local solutions for the density‐dependent non‐Newtonian compressible fluids with vacuum in one‐dimensional bounded intervals. The important points in this paper are that the initial density may vanish in an open subset and the viscosity coefficient is nonlinearly dependent of density and shear rate.  相似文献   

16.
The paper concerns existence of weak solutions to the equations describing a motion of some non‐Newtonian fluids with non‐standard growth conditions of the Cauchy stress tensor. Motivated by the fluids of strongly inhomogeneous behavior and having the property of rapid shear thickening, we observe that the Lp framework is not suitable to capture the described situation. We describe the growth conditions with the help of general x‐dependent convex function. This formulation yields the existence of solutions in generalized Orlicz spaces. As examples of motivation for considering non‐Newtonian fluids in such spaces, we recall the electrorheological fluids, magnetorheological fluids, and shear thickening fluids. The existence of solutions is established by the generalization of the classical Minty method to non‐reflexive spaces. The result holds under the assumption that the lowest growth of the Cauchy stress is greater than the critical exponent q=(3d+ 2)/(d+ 2), where d is for space dimension. The restriction on the exponent q is forced by the convective term. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
In 1983, the second author [D. Maru?i?, Ars Combinatoria 16B (1983), 297–302] asked for which positive integers n there exists a non‐Cayley vertex‐transitive graph on n vertices. (The term non‐Cayley numbers has later been given to such integers.) Motivated by this problem, Feng [Discrete Math 248 (2002), 265–269] asked to determine the smallest valency ?(n) among valencies of non‐Cayley vertex‐transitive graphs of order n. As cycles are clearly Cayley graphs, ?(n)?3 for any non‐Cayley number n. In this paper a goal is set to determine those non‐Cayley numbers n for which ?(n) = 3, and among the latter to determine those for which the generalized Petersen graphs are the only non‐Cayley vertex‐transitive graphs of order n. It is known that for a prime p every vertex‐transitive graph of order p, p2 or p3 is a Cayley graph, and that, with the exception of the Coxeter graph, every cubic non‐Cayley vertex‐transitive graph of order 2p, 4p or 2p2 is a generalized Petersen graph. In this paper the next natural step is taken by proving that every cubic non‐Cayley vertex‐transitive graph of order 4p2, p>7 a prime, is a generalized Petersen graph. In addition, cubic non‐Cayley vertex‐transitive graphs of order 2pk, where p>7 is a prime and k?p, are characterized. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 77–95, 2012  相似文献   

18.
It is shown that every sufficiently large almost‐5‐connected non‐planar graph contains a minor isomorphic to an arbitrarily large graph from one of six families of graphs. The graphs in these families are also almost‐5‐connected, by which we mean that they are 4‐connected and all 4‐separations contain a “small” side. As a corollary, every sufficiently large almost‐5‐connected non‐planar graph contains both a K3, 4‐minor and a ‐minor. The connectivity condition cannot be reduced to 4‐connectivity, as there are known infinite families of 4‐connected non‐planar graphs that do not contain a K3, 4‐minor. Similarly, there are known infinite families of 4‐connected non‐planar graphs that do not contain a ‐minor.  相似文献   

19.
In this paper we show some non‐elementary speed‐ups in logic calculi: Both a predicative second‐order logic and a logic for fixed points of positive formulas are shown to have non‐elementary speed‐ups over first‐order logic. Also it is shown that eliminating second‐order cut formulas in second‐order logic has to increase sizes of proofs super‐exponentially, and the same in eliminating second‐order epsilon axioms. These are proved by relying on results due to P. Pudlák. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The propagation of a spherical shock wave in a non‐ideal gas with or without gravitational effects is investigated under the action of monochromatic radiation. Similarity solutions are obtained for adiabatic flow between the shock and the piston. The numerical solutions are obtained using the Runge‐Kutta method of the fourth order. The density of the gas is assumed to be constant. The total energy of the shock wave is non‐constant and varies with time. The effects of change in values of non‐idealness parameter, gravitational parameter, shock Mach number, radiation parameter, and adiabatic exponent of the gas on shock strength and flow variables are worked out in detail. It is investigated that the presence of gravitational field increases the compressibility of the medium, due to which it is compressed and, therefore, the distance between the inner contact surface and the shock surface is reduced. A comparison is also made between the solutions in the cases of the gravitating and the non‐gravitating media. It is manifested that the gravitational parameter and the radiation parameter have in general opposite behaviour on the flow variables and the shock strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号