首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A novel azo‐containing dithiocarbamate, 1‐phenylethyl N,N‐(4‐phenylazo) phenylphenyldithiocarbamate (PPADC), was successfully synthesized and used to mediate the polymerization of methyl acrylate (MA) and styrene (St). In the presence of PPADC, the reversible addition‐fragmentation chain transfer (RAFT) polymerization was well controlled in the case of MA, however, the slightly ill‐controlled in the case of St. Interestingly, the polymerization of St could be well‐controlled when using PPADC as the initiator in the presence of CuBr/PMDETA via atom transfer radical polymerization (ATRP) technique. In the cases of RAFT polymerization of MA and ATRP of St, the kinetic plots were both of first‐order, and the molecular weight of the polymer increased linearly with the monomer conversion while keeping the relatively narrow molecular weight distribution (Mw/Mn). The molecular weight of the polymer measured by gel permeation chromatographer (GPC) was also close to the theoretical value (Mn(th)). The obtained polymer was characterized by 1H‐NMR analysis, ultraviolet absorption, FTIR spectra analysis and chain‐extension experiments. Furthermore, the photoresponsive behaviors of azobenzene‐terminated poly(methyl acrylate) (PMA) and polystyrene (PS) were similar to PPADC. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5626–5637, 2008  相似文献   

2.
This study deals with control of the molecular weight and molecular weight distribution of poly(vinyl acetate) by iodine‐transfer radical polymerization and reversible addition‐fragmentation transfer (RAFT) emulsion polymerizations as the first example. Emulsion polymerization using ethyl iodoacetate as the chain transfer agent more closely approximated the theoretical molecular weights than did the free radical polymerization. Although 1H NMR spectra indicated that the peaks of α‐ and ω‐terminal groups were observed, the molecular weight distributions show a relatively broad range (Mw/Mn = 2.2–4.0). On the other hand, RAFT polymerizations revealed that the dithiocarbamate 7 is an excellent candidate to control the polymer molecular weight (Mn = 9.1 × 103, Mw/Mn = 1.48), more so than xanthate 1 (Mn = 10.0 × 103, Mw/Mn = 1.89) under same condition, with accompanied stable emulsions produced. In the Mn versus conversion plot, Mn increased linearly as a function of conversion. We also performed seed‐emulsion polymerization using poly(nonamethylene L ‐tartrate) as the chiral polyester seed to fabricate emulsions with core‐shell structures. The control of polymer molecular weight and emulsion stability, as well as stereoregularity, is also discussed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

3.
The reversible addition‐fragmentation chain transfer (RAFT) copolymerization of styrene and 4‐vinylbenzyl dithiobenzoate, a RAFT‐based inimer (initiator‐monomer), is described. Controlled polymerization was achieved in bulk conditions using thermal initiation at 110 °C to give arborescent polystyrene (arbPSt). The number‐average molecular weights of the polymers increased linearly with conversion and were much higher than theoretically calculated for a linear polymerization, reaching Mn = 364,000 g/mol with Mw/Mn = 2.65. Branching analysis by NMR showed an average of 3.5 branches per chain. SEC data, which were similar to those measured in arborescent polyisobutylene, supported the architectural analysis. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7621–7627, 2008  相似文献   

4.
High molecular weight poly(vinyl)silazane were synthesized successfully by reversible addition fragmentation chain transfer (RAFT) polymerization in toluene at 120 °C, using dithiocarbamate derivatives and 2,2′‐azobis‐isobutyrylnitrile (AIBN) as the RAFT agents and thermal initiator, respectively. The polymerization of a vinylcyclicsilazane oligomer with 82.5% conversion was readily controlled to increase the molecular weight from 1000 to 12,000 g/mol with a narrow polydispersity <1.5. The resulting polymer showed a high ceramic yield of 70 wt % at 1000 °C. Moreover, the approach was extended successfully to the synthesis of poly(vinyl)silazane‐block‐polystyrene as an inorganic–organic diblock copolymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4594–4601, 2008  相似文献   

5.
Single electron transfer‐living radical polymerization (SET‐LRP) represents a robust and versatile method for the rapid synthesis of macromolecules with defined architecture. The present article describes the polymerization of methyl methacrylate by SET‐LRP in protic solvent mixtures. Herein, the polymerization process was catalyzed by a straightforward Cu(0)wire/Me6‐TREN catalyst while initiation was obtained by toluenesulfonyl chloride. All experiments were conducted at 50 °C and the living polymerization was demonstrated by kinetic evaluation of the SET‐LRP. The process follows first order kinetic until all monomer is consumed which was typically achieved within 4 h. The molecular weight increased linearly with conversion and the molecular weight distributions were very narrow with Mw/Mn ~ 1.1. Detailed investigations of the polymer samples by MALDI‐TOF confirmed that no termination took place and that the chain end functionality is retained throughout the polymerization process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2236–2242, 2010  相似文献   

6.
We report here a novel direct method for the syntheses of primary aminoalkyl methacrylamides that requires mild reagents and no protecting group chemistry. The reversible addition‐fragmentation chain transfer polymerization (RAFT) of the aminoalkyl methacrylamide revealed to be highly efficient with 4‐cyanopentanoic acid dithiobenzoate (CTP) as chain transfer agent and 4,4′‐azobis(4‐cyanovaleric acid) (ACVA) as initiator. Cationic amino‐based homopolymers of reasonably narrow polydispersities (Mw/Mn < 1.30) and predetermined molecular weights were obtained without recourse to any protecting group chemistry. A range of block and random copolymers were also synthesized via the RAFT process. The homopolymers and copolymers were characterized by aqueous conventional and triple detection gel permeation chromatography systems. Furthermore, the primary amine‐based methacrylamide monomers and polymers revealed to be highly stable both with the primary amino group in the protonated and deprotonated form. We have also demonstrated that stabilized gold nanoparticles can be generated with the RAFT‐synthesized amine‐based polymers via a photochemical process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4984–4996, 2008  相似文献   

7.
In this work, high molecular weight polyvinyl acetate (PVAc) (Mn,GPC = 123,000 g/mol, Mw/Mn = 1.28) was synthesized by reversible addition‐fragmentation chain transfer polymerization (RAFT) under high pressure (5 kbar), using benzoyl peroxide and N,N‐dimethylaniline as initiator mediated by (S)‐2‐(ethyl propionate)‐(O‐ethyl xanthate) (X1) at 35 °C. Polymerization kinetic study with RAFT agent showed pseudo‐first order kinetics. Additionally, the polymerization rate of VAc under high pressure increased greatly than that under atmospheric pressure. The “living” feature of the resultant PVAc was confirmed by 1H NMR spectroscopy and chain extension experiments. Well‐defined PVAc with high molecular weight and narrow molecular weight distribution can be obtained relatively fast by using RAFT polymerization at 5 kbar. © 2015 Wiley Periodicals, Inc. J. Polym. Sci. Part A: Polym. Chem. 2015 , 53, 1430–1436  相似文献   

8.
Ion exchange resin immobilized Co(II) catalyst with a small amount of soluble CuCl2/Me6TREN catalyst was successfully applied to atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in DMF. Using this catalyst, a high conversion of MMA (>90%) was achieved. And poly(methyl methacrylate) (PMMA) with predicted molecular weight and narrow molecular weight distribution (Mw/Mn = 1.09–1.42) was obtained. The immobilized catalyst can be easily separated from the polymerization system by simple centrifugation after polymerization, resulting in the concentration of transition metal residues in polymer product was as low as 10 ppm. Both main catalytic activity and good controllability over the polymerization were retained by the recycled catalyst without any regeneration process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1416–1426, 2008  相似文献   

9.
2‐[(Diphenylphosphino)methyl]pyridine (DPPMP) was successfully used as a bidentate ligand in the iron‐mediated atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) with various initiators and solvents. The effect of the catalytic system on ATRP was studied systematically. Most of the polymerizations with DPPMP ligand were well controlled with a linear increase in the number‐average molecular weights (Mn) versus conversion and relatively low molecular weight distributions (Mw/Mn = 1.10–1.3) being observed throughout the reactions, and the measured molecular weights matched the predicted values. Initially added iron(III) bromide improved the controllability of the polymerization reactions in terms of molecular weight control. The ratio of ligand to metal influenced the controllability of ATRP system, and the optimum ratio was found to be 2:1. It was shown that ATRP of MMA with FeX2/DPPMP catalytic system (X = Cl, Br) initiated by 2‐bromopropionitrile (BPN) was controlled more effectively in toluene than in polar solvents. The rate of polymerization increased with increasing the polymerization temperature and the apparent activation energy was calculated to be 56.7 KJ mol?1. In addition, reverse ATRP of MMA was able to be successfully carried out using AIBN in toluene at 80 °C. Polymerization of styrene (St) was found to be controlled well by using the PEBr/FeBr2/DPPMP system in DMF at 110 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2922–2935, 2008  相似文献   

10.
Chain transfer to solvent has been investigated in the conventional radical polymerization and nitroxide‐mediated radical polymerization (NMP) of N‐isopropylacrylamide (NIPAM) in N,N‐dimethylformamide (DMF) at 120 °C. The extent of chain transfer to DMF can significantly impact the maximum attainable molecular weight in both systems. Based on a theoretical treatment, it has been shown that the same value of chain transfer to solvent constant, Ctr,S, in DMF at 120 °C (within experimental error) can account for experimental molecular weight data for both conventional radical polymerization and NMP under conditions where chain transfer to solvent is a significant end‐forming event. In NMP (and other controlled/living radical polymerization systems), chain transfer to solvent is manifested as the number‐average molecular weight (Mn) going through a maximum value with increasing monomer conversion. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
Two kinds of Schiff base, N,N′‐dibenzylidene‐1,2‐diaminoethane (NDBE) and N,N′‐disalicylidene‐1,2‐diaminoethane, have been found as efficient organic catalyst for reversible complexation‐mediated radical polymerization (RCMP) of methyl methacrylate (MMA) for the first time. The polymerization results show obvious features of “living”/controlled radical polymerization. Well‐defined and low‐polydispersity polymers (Mw/Mn = 1.20–1.40) are obtained in RCMP of MMA catalyzed by Schiff base at mild temperature (65–80°C). Moreover, Schiff base also exhibits a particularly high reactivity for RCMP of MMA with in situ formed alkyl iodide initiator. The polymer molecular weight and its polydispersity (Mw/Mn is around 1.20) are well controlled even with high monomer conversion. Notably, when the dosage of azo initiator is same as the dosage of iodine, the polymerization could also be realized in the presence of NDBE. The living feature of synthesized polymer is confirmed through the chain extension experiment. In short, Schiff base is a kind of high‐efficient catalyst for RCMP and reverse RCMP of MMA, which can be one of the most powerful and robust techniques for polymer synthesis. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1653–1663  相似文献   

12.
A novel reversible addition–fragmentation chain transfer polymerization (RAFT) of methyl methacrylate (MMA) in the presence of oxygen was carried out for the first time without added chemical initiators. The polymerization was mediated by 2‐cyanoprop‐2‐yl 1‐dithionaphthalate (CPDN) or cumyl dithionaphthalenoate (CDN) as RAFT agent. The polymerization demonstrated the features of a living/controlled radical polymerization. The polymerization rate increased with oxygen concentration. Polymers with molecular weight Mn up to 520,000 g/mol, polydispersity Mw/Mn ~1.46 and RAFT efficiency Mn,th/Mn,GPC ~1.026 in the case of CPDN and Mn ~331,500 g/mol, Mw/Mn ~1.35, and Mn,th/Mn,GPC ~1.137 in the case of CDN were obtained. The possible mechanism of the thermal‐initiated RAFT polymerization of MMA in the presence of oxygen was discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3343–3354, 2006  相似文献   

13.
Slow initiation relative to propagation has previously prevented photodimers of 9‐bromoanthracene or 9‐chloroanthracene, formed by [4 + 4] photocyclization reactions of the analogous 9‐haloanthracene, from being viable initiators in atom transfer radical polymerization (ATRP) reactions. The resulting polymers were found to possess high polydispersity index (PDI) values, much higher than expected number average molecular weight (Mn) values, with the reaction displaying a nonlinear relationship between monomer conversion and Mn. We report here the use of silane radical atom abstraction (SRAA) to create initiating bridgehead radicals in the presence of 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO) to mediate the polymerization. When using SRAA coupled with nitroxide mediated polymerization, a dramatic decrease in PDI values was observed compared with analogous ATRP reactions, with Mn values much closer to those anticipated based on monomer‐to‐initiator ratios. Analysis using UV‐Vis spectroscopy indicated only partial anthracene labeling (~ 25%) on the polymers, consistent with thermolysis of the anthracene photodimer coupled with competition between initiation from the bridgehead photodimer radical and silane‐based radical. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6016–6022, 2008  相似文献   

14.
This work describes the polymerization of the free secondary amine bearing monomer 2,2,6,6‐tetramethylpiperidin‐4‐yl methacrylate (TMPMA) by means of different controlled radical polymerization techniques (ATRP, RAFT, NMP). In particular, reversible addition‐fragmentation chain transfer (RAFT) polymerization enabled a good control at high conversions and a polydispersity index below 1.3, thereby enabling the preparation of well‐defined polymers. Remarkably, the polymerization of the secondary amine bearing methacrylate monomer was not hindered by the presence of the free amine that commonly induces degradation of the RAFT reagent. Subsequent oxidation of the polymer yielded the polyradical poly(2,2,6,6‐tetramethylpiperidinyloxy‐4‐yl methacrylate), which represents a valuable material used in catalysis as well as for modern batteries. The obtained polymers having a molar mass (Mn) of 10,000–20,000 g/mol were used to fabricate well‐defined, radical‐bearing polymer films by inkjet‐ printing. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
An N‐alkoxyamine macroinitiator bearing a polymeric nitroxide cap was synthesized and used to investigate the effect of nitroxide size on the rate of nitroxide‐mediated radical polymerization (NMRP). This macroinitiator was prepared from asymmetric double‐headed initiator 9 , which contains both an α‐bromoester and an N‐alkoxyamine functionality. Poly(methyl methacrylate) was grown by atom transfer radical polymerization from the α‐bromoester end of this initiator, resulting in a macroinitiator (Mn = 31,000; PDI = 1.34) bearing a nitroxide cap permanently attached to a polymer chain. The polymerization kinetics of this macroinitiator in NMRP were compared with known N‐alkoxyamine initiator 1 . It was found that the rate of polymerization was unaffected by the size of the macromolecular nitroxide cap. It was confirmed that NMRP using this macroinitiator is a “living” process. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2015–2025, 2007  相似文献   

16.
Nickel‐mediated atom transfer radical polymerization (ATRP) and iron‐mediated reverse ATRP were applied to the living radical graft polymerization of methyl methacrylate onto solid high‐density polyethylene (HDPE) films modified with 2,2,2‐tribromoethanol and benzophenone, respectively. The number‐average molecular weight (Mn) of the free poly(methyl methacrylate) (PMMA) produced simultaneously during grafting grew with the monomer conversion. The weight‐average molecular weight/number‐average molecular weight ratio (Mw/Mn) was small (<1.4), indicating a controlled polymerization. The grafting ratio showed a linear relation with Mn of the free PMMA for both reaction systems. With the same characteristics assumed for both free and graft PMMA, the grafting was controlled, and the increase in grafting ratio was ascribed to the growing chain length of the graft PMMA. In fact, Mn and Mw/Mn of the grafted PMMA chains cleaved from the polyethylene substrate were only slightly larger than those of the free PMMA chains, and this was confirmed in the system of nickel‐mediated ATRP. An appropriate period of UV preirradiation controlled the amount of initiation groups introduced to the HDPE film modified with benzophenone. The grafting ratio increased linearly with the preirradiation time. The graft polymerizations for both reaction systems proceeded in a controlled fashion. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3350–3359, 2002  相似文献   

17.
The synthesis of poly(tert‐butyl acrylate‐block‐vinyl acetate) copolymers using a combination of two living radical polymerization techniques, atom transfer radical polymerization (ATRP) and reversible addition‐fragmentation chain transfer (RAFT) polymerization, is reported. The use of two methods is due to the disparity in reactivity of the two monomers, viz. vinyl acetate is difficult to polymerize via ATRP, and a suitable RAFT agent that can control the polymerization of vinyl acetate is typically unable to control the polymerization of tert‐butyl acrylate. Thus, ATRP was performed to make poly(tert‐butyl acrylate) containing a bromine end group. This end group was subsequently substituted with a xanthate moiety. Various spectroscopic methods were used to confirm the substitution. The poly(tert‐butyl acrylate) macro‐RAFT agent was then used to produce (tert‐butyl acrylate‐block‐vinyl acetate). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7200–7206, 2008  相似文献   

18.
In this work, living radical polymerizations of a water‐soluble monomer poly(ethylene glycol) monomethyl ether methacylate (PEGMA) in bulk with low‐toxic iron catalyst system, including iron chloride hexahydrate and triphenylphosphine, were carried out successfully. Effect of reaction temperature and catalyst concentration on the polymerization of PEGMA was investigated. The polymerization kinetics showed the features of “living”/controlled radical polymerization. For example, Mn,GPC values of the resultant polymers increased linearly with monomer conversion. A faster polymerization of PEGMA could be obtained in the presence of a reducing agent Fe(0) wire or ascorbic acid. In the case of Fe(0) wire as the reducing agent, a monomer conversion of 80% was obtained in 80 min of reaction time at 90 °C, yielding a water‐soluble poly(PEGMA) with Mn = 65,500 g mol?1 and Mw/Mn = 1.39. The features of “living”/controlled radical polymerization of PEGMA were verified by analysis of chain‐end and chain‐extension experiments. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
Branched polystyrenes with abundant pendant vinyl functional groups were prepared via radical polymerization of an asymmetric divinyl monomer, which possesses a higher reactive styryl and a lower reactive butenyl. Employing a fast reversible addition fragmentation chain transfer (RAFT) equilibrium, the concentration of active propagation chains remained at a low value and thus crosslinking did not occur until a high level of monomer conversion. The combination of a higher reaction temperature (120 °C) and RAFT agent cumyl dithiobenzoate was demonstrated to be optimal for providing both a more highly branched architecture and a higher polymer yield. The molecular weights (Mws) increased with monomer conversions because of the controlled radical polymerization characteristic, whereas the Mw distributions broadened showing a result of the gradual increase of the degree of branching. The evolution of branched structure has been confirmed by a triple detection size exclusion chromatography (TRI‐SEC) and NMR technique. Furthermore, the double bonds in the side chains were successfully used for chemical modification reactions. 1H NMR and FTIR measurements reveal that the great mass of pendant vinyl groups were converted to the corresponding objective end‐groups. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6023–6034, 2008  相似文献   

20.
The controlled cationic polymerization of cyclopentadiene (CPD) at 20 °C using 1‐(4‐methoxyphenyl)ethanol (1)/B(C6F5)3 initiating system in the presence of fairly large amount of water is reported. The number–average molecular weights of the obtained polymers increased in direct proportion to monomer conversion in agreement with calculated values and were inversely proportional to initiator concentration, while the molecular weight distribution slightly broadened during the polymerization (Mw/Mn ~ 1.15–1.60). 1H NMR analyses confirmed that the polymerization proceeds via reversible activation of the C? OH bond derived from the initiator to generate the growing cationic species, although some loss of hydroxyl functionality happened in the course of the polymerization. It was also shown that the enchainment in cationic polymerization of CPD was affected by the nature of the solvent(s): for instance, polymers with high regioselectivity ([1,4] up to 70%) were obtained in acetonitrile, whereas lower values (around 60%) were found in CH2Cl2/CH3CN mixtures. Aqueous suspension polymerization of CPD using the same initiating system was successfully performed and allowed to synthesize primarily hydroxyl‐terminated oligomers (Fn = 0.8–0.9) with Mn ≤ 1000 g mol?1 and broad MWD (Mw/Mn ~ 2.2). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4734–4747, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号