首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of the reaction of OH + 2-ethylfuran has been investigated using the G3MP2 and G3MP2B3 levels of theory. The geometric parameters of all species involved in the reaction have been optimized at the MP2 and B3LYP levels of theory with 6-311G(d,p) basis set. The overall profile of doublet potential energy surface (PES) for the OH + 2-ethylfuran reaction has been constructed using the G3MP2 and G3MP2B3 methods. The results show that the addition-elimination mechanism dominates the OH + 2-ethylfuran reaction and the major products are CH3CH2C(OH)CHCHCHOH (P8) and CH3CH2COCHCHCHOH (P6).  相似文献   

2.
The mechanisms for the reaction of CH3SSCH3 with OH radical are investigated at the QCISD(T)/6‐311++G(d,p)//B3LYP/6‐311++G(d,p) level of theory. Five channels have been obtained and six transition state structures have been located for the title reaction. The initial association between CH3SSCH3 and OH, which forms two low‐energy adducts named as CH3S(OH)SCH3 (IM1 and IM2), is confirmed to be a barrierless process, The S? S bond rupture and H? S bond formation of IM1 lead to the products P1(CH3SH + CH3SO) with a barrier height of 40.00 kJ mol?1. The reaction energy of Path 1 is ?74.04 kJ mol?1. P1 is the most abundant in view of both thermodynamics and dynamics. In addition, IMs can lead to the products P2 (CH3S + CH3SOH), P3 (H2O + CH2S + CH3S), P4 (CH3 + CH3SSOH), and P5 (CH4 + CH3SSO) by addition‐elimination or hydrogen abstraction mechanism. All products are thermodynamically favorable except for P4 (CH3 + CH3SSOH). The reaction energies of Path 2, Path 3, Path 4, and Path 5 are ?28.42, ?46.90, 28.03, and ?89.47 kJ mol?1, respectively. Path 5 is the least favorable channel despite its largest exothermicity (?89.47 kJ mol?1) because this process must undergo two barriers of TS5 (109.0 kJ mol?1) and TS6 (25.49 kJ mol?1). Hopefully, the results presented in this study may provide helpful information on deep insight into the reaction mechanism. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

3.
The potential energy profiles for the mutual conversion of the isomeric molecular ions [C5H6O]+? of 2‐methylfuran, 3‐methylfuran and 4H‐pyran and the fragmentations that lead to [C5H5O]+ ions were obtained from calculations at the B3LYP/6‐311G + + (3df,3pd)//B3LYP/6‐31G(d,p) level of theory. The various competing unimolecular processes were characterized by their RRKM microcanonical rate coefficients, k(E), using the sets of reactant and transition state frequencies and the kinetic barriers obtained from the density functional method. In either a high‐ or a low‐energy regime, the pyrylium ion [C5H5O]+ is generated directly from the 4H‐pyran molecular ion by a simple cleavage. In contrast, in the metastable kinetic window, the molecular ions of methylfurans irreversibly isomerize to a mixture of interconverting structures before dissociation, which includes the 2H‐ and 3H‐pyran ions. The hydrogen atoms attached to saturated carbons of the pyran rings are very stabilizing at the position 2, but they are very labile at position 3 and can be shifted to adjacent positions. Once 4H‐pyran ion has been formed, the C? H bond cleavage begins before any hydrogen shift occurs. According to our calculation, there would not be complete H scrambling preceding the dissociation of the molecular ions [C5H6O]+?. On the other hand, as the internal energy of the 2‐methylfuran molecular ion increases, H? loss can become more important. These results agree with the available experimental data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The gas‐phase pyrolytic decomposition mechanisms of 3‐anilino‐1‐propanol with the products of aniline, ethylene, and formaldehyde or N‐methyl aniline and aldehyde were studied by density functional theory. The geometries of the reactant, transition states, and intermediates were optimized at the B3LYP/6‐31G (d, p) level. Vibration analysis was carried out to confirm the transition state structures, and the intrinsic reaction coordinate method was performed to search the minimum energy path. Four possible reaction channels are shown, including two concerted reactions of direct pyrolytic decomposition and two indirect channels in which the reactant first becomes a ring‐like intermediate, followed by concerted pyrogenation. One of the concerted reactions in the direct pyrolytic decomposition has the lowest activation barrier among all the four channels, and so, it occurs more often than others. The results appear to be consistent with the experimental outcomes. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

5.
用密度泛函理论在B3LYP/6-311G(d,p)水平上研究了甲醇和氨辅助的腺嘌呤水解脱氨机理,结果表明该反应首先是在水的亲核进攻下形成一个四面体结构中间体,然后该中间体通过构象变化得到两个不同构象,从而找到两条不同反应路径.在路径a中,辅助分子参与了过渡态的形成,起到转移氢原子的作用;而在路径b中,辅助分子仅作为介质,没有参与过渡态的形成.在氨辅助的情况下,腺嘌呤在亲核反应前发生了胺-亚胺异构化,而在甲醇辅助机理中则未发生该异构化.能量结果表明甲醇辅助腺嘌呤脱氨反应具有与水辅助类似的势垒,而氨辅助反应的势垒则比水辅助的高.  相似文献   

6.
To probe the kinetic performance of microsolvated α‐nucleophile, the G2(+)M calculations were carried out for the gas‐phase SN2 reactions of monohydrated and dihydrated α‐oxy‐nucleophiles XO?(H2O)n = 1,2 (X = HO, CH3O, F, Cl, Br), and α‐sulfur‐nucleophile, HSS?(H2O)n = 1,2, toward CH3Cl. We compared the reactivities of hydrated α‐nucleophiles to those of hydrated normal nucleophiles. Our calculations show that the α‐effect of monohydrated and dihydrated α‐oxy‐nucleophiles will become weaker than those of unhydrated ones if we apply a plot of activation barrier as a function of anion basicity. Whereas the enhanced reactivity of monohydrated and dihydrated ROO? (R = H, Me) could be observed if compared them with the specific normal nucleophiles, RO? (R = H, Me). This phenomena can not be seen in the comparisons of XO?(H2O)n = 1,2 (X = F, Cl, Br) with ClC2H4O?(H2O)n = 1,2, a normal nucleophile with similar gas basicity to XO?(H2O)n = 1,2. These results have been carefully analyzed by natural bond orbital theory and activation strain model. Meanwhile, the relationships between activation barriers with reaction energies and the ionization energies of α‐nucleophile are also discussed. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
The mechanism on the OH‐initiated atmospheric oxidation reaction of (Z)‐CF3CH?CHCF3 with and without O2/NO has been investigated theoretically. The electronic structure information of the potential energy surface was obtained at the M06‐2X/aug‐cc‐pVDZ level, and the single‐point energies were refined by MCG3/3 method. The calculations show that the (Z)‐CF3CH?CHCF3 + OH reaction occurs via addition‐elimination mechanism, leading to products CF3 and CF3CH?CH(OH), rather than H‐abstraction mechanism at low temperature. Under atmospheric condition, the OH‐addition intermediate is likely to react rapidly with O2/NO, and the likely products are CF3C(O)H, CF2(O), CF3CH(OH)CH(O), FNO, and HO2, as is proposed by experiment. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Dehydroepiandrosterone (DHEA) is an important neurosteroid with neuronal protection and memory enhancement functions. 7α‐OH DHEA and 7β‐OH DHEA are the two important metabolites of DHEA in the brain. We have developed an LC/MS method to quantitatively analyze 7α‐OH DHEA and 7β‐OH DHEA. Chromatographic separation was carried out on a C18 column with gradient elution using mobile phases of formic acid in acetonitrile and in water formic acid. Mass spectral detection was performed with a ThermoFinnigan LCQ advantage quadruple ion trap mass spectrometer with electrospray ionization. Positive ion chromatograms were acquired using single ion monitoring. The protonated molecule was 305 m/z, but the most abundant ion (269 m/z) was used for quantification. This method was validated and applied to investigate the 7‐hydroxylation of DHEA. When incubating DHEA with rat brain microsomes, both 7α‐OH DHEA and 7β‐OH DHEA were observed, but 7α‐OH DHEA was the major metabolite. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The mechanism of the gas‐phase elimination kinetics of 2‐ethoxypyridine has been studied through the electronic structure calculations using density functional methods: B3LYP/6‐31G(d,p), B3LYP/6‐31++G(d,p), B3PW91/6‐31G(d,p), B3PW91/6‐31++G(d,p), MPW1PW91/6‐31G(d,p), MPW1PW91/6‐31++G(d,p), PBEPBE/6‐31G(d,p), PBEPBE/6‐31++G(d,p), PBE1PBE1/6‐31G(d,p), and PBE1PBE1/6‐31++G(d,p). The elimination reaction of 2‐ethoxypyridine occurs through a six‐centered transition state geometry involving the pyridine nitrogen, the substituted carbon of the aromatic ring, the ethoxy oxygen, two carbons of the ethoxy group, and a hydrogen atom, which migrates from the ethoxy group to the nitrogen to give 2‐pyridone and ethylene. The reaction mechanism appears to occur with the participation of π‐electrons, similar to alkyl vinyl ether elimination reaction, with simultaneous ethylene formation and hydrogen migration to the pyridine nitrogen producing 2‐pyridone. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

10.
蔺楠  王剑波等 《中国化学》2002,20(8):789-794
Electron impact-induced fragmentation mechanism of Trans-α-Aryl-β-enamino esters were investigated using mass-analyzed ion kinetic energy (MIKE) spectrometry and high resolution accurate mass data It was found that the main characteristic fragmentations of compounds studied were:an odd electron ion M^ -EtOH was formed by losing a neutral molecule of ethanol;and the skeletal rearrangements took place;and the ring opening reaction happened after losing a carbon monoxide;and the typical McLafferty rearrangement underwent in ester group.The cycliztion reation caused by losing neutral molecule of TsNH2 due to the ortho-effects of substituted group of gromatic ring was also observed.  相似文献   

11.
A quantum chemical investigation on the reaction mechanism of CH3O2 with OH has been performed. Based on B3LYP and QCISD(T) calculations, seven possible singlet pathways and seven possible triplet pathways have been found. On the singlet potential energy surface (PES), the most favorable channel starts with a barrierless addition of O atom to CH3O2 leading to CH3OOOH and then the O? O bond dissociates to give out CH3O + HO2. On the triplet PES, the calculations indicate that the dominant products should be 3CH2O2 + H2O with an energy barrier of 29.95 kJ/mol. The results obtained in this work enrich the theoretical information of the title reaction and provide guidance for analogous atmospheric chemistry reactions. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
胡武洪  申伟  李明 《化学学报》2004,62(9):854-859,M003
用量子化学密度泛函理论(DFT)和G3(MP2)B3方法,对O(1↑D)与CH2FCF3的反应进行了研究.在UB3LYP/6-31G(d)计算水平上,优化了反应势能面上各驻点的几何结构,在G3(MP2)B3水平上进行了单点计算,并利用UB3LYP/6-311 G(3df,3pd)计算的波函数进行了电荷密度分析.通过内禀坐标(IRC)计算和振动分析,对反应过渡态进行了确认,并确定了反应机理.  相似文献   

13.
The comprehensive mechanism survey on the gas‐phase reaction between nickel monoxide and methane for the formation of syngas, formaldehyde, methanol, water, and methyl radical has been investigated on the triplet and singlet state potential energy surfaces at the B3LYP/6‐311++G(3df, 3pd)//B3LYP/6‐311+G(2d, 2p) levels. The computation reveals that the singlet intermediate HNiOCH3 is crucial for the syngas formation, whereas two kinds of important reaction intermediates, CH3NiOH and HNiOCH3, locate on the deep well, while CH3NiOH is more energetically favorable than HNiOCH3 on both the triplet and singlet states. The main products shall be syngas once HNiOCH3 is created on the singlet state, whereas the main products shall be methyl radical if CH3NiOH is formed on both singlet and triplet states. For the formation of syngas, the minimal energy reaction pathway (MERP) is more energetically preferable to start on the lowest excited singlet state other than on the ground triplet state. Among the MERP for the formation of syngas, the rate‐determining step (RDS) is the reaction step for the singlet intermediate HNiOCH3 formation involving an oxidative addition of NiO molecule into the C? H bond of methane, with an energy barrier of 120.3 kJ mol?1. The syngas formation would be more effective under higher temperature and photolysis reaction condition. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

14.
The gas‐phase reaction mechanism between methane and rhodium monoxide for the formation of methanol, syngas, formaldehyde, water, and methyl radical have been studied in detail on the doublet and quartet state potential energy surfaces at the CCSD(T)/6‐311+G(2d, 2p), SDD//B3LYP/6‐311+G(2d, 2p), SDD level. Over the 300–1100 K temperature range, the branching ratio for the Rh(4F) + CH3OH channel is 97.5–100%, whereas the branching ratio for the D‐CH2ORh + H2 channel is 0.0–2.5%, and the branching ratio for the D‐CH2ORh + H2 channel is so small to be ruled out. The minimum energy reaction pathway for the main product methanol formation involving two spin inversions prefers to both start and terminate on the ground quartet state, where the ground doublet intermediate CH3RhOH is energetically preferred, and its formation rate constant over the 300–1100 K temperature range is fitted by kCH3RhOH = 7.03 × 106 exp(?69.484/RT) dm3 mol?1 s?1. On the other hand, the main products shall be Rh + CH3OH in the reactions of RhO + CH4, CH2ORh + H2, Rh + CO +2H2, and RhCH2 + H2O, whereas the main products shall be CH2ORh + H2 in the reaction of Rh + CH3OH. Meanwhile, the doublet intermediates H2RhOCH2 and CH3RhOH are predicted to be energetically favored in the reactions of Rh + CH3OH and CH2ORh + H2 and in the reaction of RhCH2 + H2O, respectively. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

15.
The gas‐phase thermal decomposition of 3‐hydroxypropionitrile, 3‐hydroxybutyronitrile, and 3‐hydroxy‐3‐methylbutyronitrile has been studied at the MP2/6‐31G(d) level of theory at 683.15 K and 0.06 atm. Results based both in energy and structure data seem to indicate a favorable route of decomposition via a six‐membered cyclic transition state (similar to those suggested for thermal decomposition of other related compounds, such as β‐hydroxyketones, β‐hydroxyalkenes, and β‐hydroxyalkynes) rather than a four‐membered cyclic transition state or even a quasiheterolytic pathway. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

16.
The kinetics and mechanism of the reaction of OH with CH3Cl have been theoretically studied. The potential energy surface for each possible pathway has been investigated by the G2MP2 method. The rate constants for channels leading to several products have been calculated by multichannel‐Rice‐Ramsperger‐Kassel‐Marcus (RRKM) theory over a temperature range 200–2000 K. The results show the major channel is hydrogen abstraction mechanism. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

17.
应用密度泛函理论(DFT)对CH3SS与OH自由基单重态反应机理进行了研究.在B3PW91/6-311+G(d,p)水平上优化了反应通道上各驻点(反应物、中间体、过渡态和产物)的几何构型,用内禀反应坐标(IRC)计算和频率分析方法对过渡态进行了验证.在QCISD(T)/6-311++G(d,p)水平上计算了各物种的单点能,并对总能量进行了零点能校正.研究结果表明,CH3SS与OH反应为多通道反应,有5条可能的反应通道.反应物首先通过不同的S—O键相互作用形成具有竞争反应机理的中间体IM1和IM2.再经过氢迁移、脱氢和裂解等机理得到主要产物P1(CH2SS+H2O),次要产物P2(CH2S+HSOH),P3(CH3SH+1SO)和P4(CH2SSO+H2),其中最低反应通道的势垒为174.6kJ.mol-1.  相似文献   

18.
The mechanisms of the title reactions between 1‐aza‐2‐azoniaallene cations and carbodiimides in the gas phase have been examined using the Becke‐3‐parameter‐Lee‐Yang‐Parr (B3LYP) at 6‐31++G** level. The theoretical results revealed that the reaction is a domino reaction that comprises two consecutive reactions: an ionic [3+2] cycloaddition reaction between 1‐aza‐2‐azoniallene cation and carbodiimide to yield the cycloadduct 3 and then a [1,2]‐shift to yield the thermodynamically more stable adduct 4 . Both stepwise and concerted pathways are accessible in the first cycloaddition in the model reaction. The activation barriers of them are almost equivalent. For the [1,2]‐shift reactions, both of the electron‐withdrawing chlorine substituent and the electron‐releasing methyl substituent on the 1‐aza‐2‐azoniaallene cation can facilitate the reaction but have little effects when substituted in the carbodiimide moiety. The model reaction has also been investigated at the QCISD (quadratic configuration interaction using single and double substitutions)/6‐31++G** and CCSD(T) (coupled cluster calculations with single and double excitations and a perturbative estimate of triple contributions calculations)/6‐31++G** levels as well as by the density functional theory. In addition, solvent effects with the isodensity‐surface polarized continuum model are also reported for all the reactions. In solvent dichloromethane, the cycloadducts of all the reactions, except model reaction and reaction d, were obtained from reactants directly as the result of the solvent effect. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

19.
The gas phase proton affinities of 5‐methylhydantoin and its thio derivatives were theoretically studied through the use of high‐level density functional theory calculations. The structure of all possible tautomers and their conformers were optimized at the B3LYP/6‐311+(d,p) level of theory. Final energies were obtained at the B3LYP/6‐311+(2df,2p) level. The imidazolidone derivatives 5‐methyl‐2,4‐dioxo imidazolidine, 5‐methyl‐2‐oxo‐4‐thio imidazolidine, 5‐methyl‐2‐thio‐4‐oxo imidazolidine, and 5‐methyl‐2,4‐dithio imidazolidine possess moderately strong proton affinities. Protonation at sulfur would be larger than protonation at oxygen. The most stable protonated forms of 2O4O and 2S4O have the proton attached to the heteroatom in position 2, whereas protonation of 2O4S and 2S4S preferentially takes place at position 4. The barriers for proton migration between the different tautomers are rather large. The energy decomposition analysis analysis of the O? H+ and S? H+ interactions suggests that the bonding interactions come mainly from the covalent bond formation. The contribution of the Coulomb attraction is rather small. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
采用量子化学密度泛函理论研究了正辛烷与OH自由基的大气氧化反应机理。在B3LYP/6-31G(d)水平上对该反应体系的反应物、中间体、过渡态及产物进行了几何构型优化和频率计算,并在B3LYP/6-311+G(3df,2p)水平上进行了单点能计算,得出了各反应通道的势能剖面图. 计算结果表明: 羟基硝酸酯和含有羟基羰基官能团的化合物是主要的反应产物,并且它们的挥发性较低,容易形成二次有机气溶胶。另外,本文将理论计算结果与可用的实验观测结果进行了比较。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号