首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An alloy of Cu–9at.%Al(111) has been oxidized in a low‐energy electron diffraction (LEED)/AES and a scanning AES instrument at elevated temperatures. Dosing with 1300 L of oxygen at 995 K gives rise to well‐ordered oxide layer formation on the Cu–9at.%Al alloy. The structure of the ordered oxide confirmed by LEED is ( ) R30°. The chemical state of the oxide was Al2O3. The morphology of the surface observed with SEM in the scanning AES instrument revealed flat oxide growth with triangular defects of the same orientation. The possible epitaxy between the alloy substrate and alumina layer has been discussed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
X‐ray photoelectron and x‐ray excited Auger spectra were measured for the intermetallic compounds LiMGa2 and Li2MGa (M = Rh, Pd, Ir, Pt). The valence band spectra exhibit characteristic differences in the location of the M d‐band between group 9 elements (Rh, Ir) and group 10 elements (Pd, Pt) on one side and between LiMGa2 and Li2MGa on the other. The experimentally observed differences are in excellent agreement with results from band structure calculations. The combination of binding energy shifts with Auger kinetic energy shifts allowed a separation of initial and final state contributions. Core hole screening is very efficient in accordance with the metallic character of the investigated phases. The magnitude of the screening correlates with the theoretically predicted composition of the density of states at the Fermi level. Application of Wertheim's electrostatic model allowed to estimate the charge distribution for LiRhGa2 and Li2RhGa. The sign of the charges agrees with expectations that result from the Extended Zintl Concept. The results show, how dangerous it is to draw conclusions on the chemistry of such systems from photoemission data alone.  相似文献   

3.
The temperature dependence of thermal, morphological, and rheological properties of amphiphilic polyurethanes was examined with differential scanning calorimetry (DSC), wide‐angle X‐ray scattering (WAXS), small‐angle X‐ray scattering (SAXS), rheological measurements, and Fourier transform infrared spectroscopy. Multiblock (MPU) and triblock (TPU) polyurethanes were synthesized with two crystallizable segments—poly(ethylene oxide) (PEO) as a hydrophilic block and poly(tetramethylene oxide) (PTMO) as a hydrophobic block. DSC and WAXS measurements demonstrated that the microphase of MPUs in the solid state is dominantly affected by the PEO crystalline phase. However, high‐order peaks were not observed in the SAXS measurements because the crystallization of the PEO segments in MPUs was retarded by poor sequence regularity. The microphase in the melt state was induced by the hydrogen bonding between the N? H group of hexamethylene diisocyanate linkers and the ether oxygen of PEO or PTMO blocks. As the temperature increased, the smaller micro‐phase‐separated domains were merged into the larger domains, and the liquidlike ordering was eventually disrupted because of the weakening hydrogen bonding. However, the fully homogeneous state of an MPU with a molar ratio of 5/5 PEO/PTMO (MPU55) was not confirmed even at much higher temperatures with both SAXS and rheological measurements. However, the SAXS patterns of TPU showed weak but broad second‐order peaks below the melting temperature of the PEO block. Compared with MPU55, the ordering of the TPU crystalline lamellar stacks was enhanced because of the high sequence regularity and the low hydrogen‐bonding density. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2365–2374, 2003  相似文献   

4.
Cationic copolymerization of tetrahydrofuran (THF) with ethylene oxide (EO) in the presence of diols leads to dihydroxy terminated telechelic copolymers. In the present article the influence of copolymerization conditions on the copolymer structure was studied in view of conclusions derived from studies of copolymerization kinetics and mechanism. It was shown that according to established copolymerization mechanism, the number average molecular weights increase linearly with conversion up to Mn ≅ 2500, hydroxyl end groups are bound exclusively to EO units and copolymers are composed of [EO]–[THF]y segments. Microstructure of copolymers may be to some extent regulated by changing reaction conditions. Some physical properties of copolymers also were studied. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3455–3463, 1999  相似文献   

5.
The interface reactions between transition metal oxide substrates and ultra thin metal layers of different thickness (<15 nm) have been investigated by using x-ray photoelectron spectroscopy (XPS). To a different extent oxidation of deposited metal and reduction of the oxidic substrate is visible for complementary layer systems. For the interface nickel oxide/manganese an enhanced reaction is found compared to the system manganeseoxide/nickel. Based on the experimental data a model of the evolving interface is proposed.  相似文献   

6.
Random THV terpolymers consisting of tetrafluoroethylene (TFE), hexafluoropropylene (HFP), and vinylidene fluoride (VDF) are viable alternatives to polytetrafluoroethylene (PTFE) combining excellent chemical stability and thermoplastic processability. Although the properties of THV may be modified by crystallization, little is known on how crystallization is influenced by the chain microstructure of THV. We analyzed the chain microstructure of THV‐221G by solid‐state 19F NMR spectroscopy under fast magic angle spinning, revealing that THV‐221G contains 43.8 mol % TFE, 46.0 mol % VDF, and 10.2 mol % HFP. Sequence analysis revealed that the TFE units are preferentially located next to other TFE units. The HFP units, which are obstacles to crystallization because of their bulky CF3 side groups, are preferentially located next to VDF units. WAXS measurements correspondingly revealed the presence of THV‐221G crystals with PTFE‐like packing and of further THV‐221G crystal populations with widened d‐spacings caused by the incorporation of certain amounts of HFP units into the THV‐221G crystals. Under confinement imposed by the cylindrical nanopores of self‐ordered alumina, the THV‐221G melting point decreased with decreasing pore diameter. Although direct impingement of the growing THV‐221G crystals on the pore walls is unlikely, the geometric confinement limits the access of growing THV‐221G crystals to crystallizable THV‐221G chain segments. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1402–1408  相似文献   

7.
借助于Mott-Schottky方程分析了成膜电位、成膜时间、成膜温度以及氯离子等因素对22Cr双相不锈钢在碳酸氢钠/碳酸钠缓冲溶液中所成钝化膜半导体性能的影响, 同时借助于X射线光电子能谱(XPS)技术分析了所成钝化膜的组成. 结果表明: 22Cr双相不锈钢在碳酸氢钠/碳酸钠缓冲溶液中所成钝化膜呈n-p型半导体结构, 钝化膜内施主/受主密度随成膜电位增加、成膜时间延长、成膜温度降低、以及介质中氯离子浓度的降低而减小, 同时膜对基体保护作用随这些因素变化而增强. 钝化膜的XPS分析表明, 钝化膜呈现双层结构, 外层膜主要由三价铁的氧化物(Fe2O3)组成, 内层膜主要由三价铬氧化物(Cr2O3)以及少量二价铁氧化物(FeO)组成.  相似文献   

8.
The effect of ultrasonic vibrations applied in situ on the formation of W–WO interface during the exposure of a pure tungsten foil to a low‐temperature oxygen plasma is investigated by photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS). The tungsten surface was exposed to oxygen plasma at different time intervals and the evolution of the interface formation was studied by angle‐resolved XPS. We show that oxidation without ultrasonic vibrations leads to the formation of a thin oxide film whose growth kinetics is governed by an island growth mechanism. On the other hand, oxide growth in the presence of ultrasonic treatment (UST) appears to follow a layer‐by‐layer growth mode with a distinctly sharper W–WO interface. TOF‐SIMS analysis in this case revealed a reduced amount of water bonded in the film, which suggests an increase in the film's packing density. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Quantitative chemical state X‐ray photoelectron spectroscopic analysis of mixed nickel metal, oxide, hydroxide and oxyhydroxide systems is challenging due to the complexity of the Ni 2p peak shapes resulting from multiplet splitting, shake‐up and plasmon loss structures. Quantification of mixed nickel chemical states and the qualitative determination of low concentrations of Ni(III) species are demonstrated via an approach based on standard spectra from quality reference samples (Ni, NiO, Ni(OH)2, NiOOH), subtraction of these spectra, and data analysis that integrates information from the Ni 2p spectrum and the O 1s spectra. Quantification of a commercial nickel powder and a thin nickel oxide film grown at 1‐Torr O2 and 300 °C for 20 min is demonstrated. The effect of uncertain relative sensitivity factors (e.g. Ni 2.67 ± 0.54) is discussed, as is the depth of measurement for thin film analysis based on calculated inelastic mean free paths. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Silver has rarely been considered as the catalyst for CO oxidation, although it has been recognized to be very active in several partial oxidation reactions such as ethylene epoxidation and formaldehyde synthesis. It is generally believed that a metal support interaction plays an important role in catalytic processes. Therefore in our study, we examined electronic and adsorption properties of cerium deposited onto a polycrystalline silver substrate. Layers of approximately one monolayer of cerium deposited on a clean silver substrate were examined in situ using surface‐sensitive techniques—by XPS, ultraviolet photoelectron spectroscopy (UPS) and low energy ion scattering (LEIS). CO molecular adsorption was observed by UPS and LEIS; experimental results exhibited CO adsorption on Ce atoms sites. Oxygen adsorption on deposited layers led to a strong oxidation; stoichiometry of oxidized layers was given by amount of adsorbed oxygen and by temperature. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Positron lifetime measurements were carried out in a series of poly(ethylene oxide)—PEO—of different average molecular weights (M w): 1000, 1500, 6000, 10,000, 300,000, and 4 M. The mean radius (R ) and the mean free volume size (Vf) values were determined using a semiempirical equation that correlates the ortho‐positronium (o‐Ps) lifetime (τ3) and size of holes existing in the amorphous phases. The hole mean radius values determined at room temperature from lifetime spectra were found to be between 2.68 and 2.97 Å, and the hole volumes between 80 and 110 Å3. Free volume size evolution was studied with temperature variation until the melting temperature of the PEO samples. The degree of crystallinity and the melting temperatures were determined by Differential Scanning Calorimetry. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 219–226, 1999  相似文献   

12.
The mechanical and electrical properties of the phosphor‐doped nano‐silicon film (nc‐Si:H) prepared by the plasma‐enhanced chemical vapor deposition (PECVD) method under electric field have been studied by Tribolab system, which is equipped with nano‐electrical contact resistance (ECR) tool. During indentation, different voltages and loads were applied. The topography of the sample surface was studied by atomic force microscopy (AFM). The experimental results show that the roughness of the film is 5.69 nm; the electric current was measured through the sample/indenter tip with different loads at a fixed voltage, and it increased nonlinearly during the indentation. The maximum current value depth was shallower than the maximum depth of each indent due to the plasticity of the film. When the loading speed is increased to 250 µN/s, the microcrack occurred on the film; the hardness (H) and elastic modulus (E) changed with the voltage applied both in open circuit and in short circuit case, which resulted in different values of H/E rate from 0.082 to 0.096. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Polyether(ester amide)s with poly(propylene oxide) (PPO) and monodisperse poly(hexamethylene terephthalamide) segments were synthesized, and their structure–property relations were investigated. The length of the amide segments was varied from diamide to tetraamide to hexaamide segments, and therefore the number hydrogen bonds per amide segment increased from two to four to six. PPO was end‐capped with 20 wt % ethylene oxide and had number‐average molecular weights of 1000, 2300, and 4000 g/mol (including ethylene oxide tips). The morphology of the poly‐ether(ester amide)s was studied with transmission electron microscopy and atomic force microscopy, the thermal properties were studied with differential scanning calorimetry and dynamic mechanical thermal analysis, and the tensile properties were studied with dumbbell samples. The elastic behavior of the block copolymers was investigated with tensile and compression tests. These segmented copolymers had two sharp transitions: a glass‐transition temperature (Tg) of the PEO–PPO–PEO phase [where PEO is poly(ethylene oxide)] and a melting temperature (Tm) of the amide segments. The amide segments crystallized in nanoribbons with a high aspect ratio 1000. Tm increased with the amide segment length and with decreasing PEO–PPO–PEO content (solvent effect). The modulus increased strongly with the amide content. This modulus increase could be described by the Halpin–Tsai fiber composite model. Increasing the amide segment length surprisingly also improved the elasticity. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4769–4781, 2006  相似文献   

14.
Poly(D,L‐lactide‐co‐glycolide) 50:50 (PLGA)/graphene oxide (GO) nanocomposite films were prepared with various GO weight fractions. A significant enhancement of mechanical properties of the PLGA/GO nanocomposite films was obtained with GO weight fractions. The incorporation of only 5 wt% of GO resulted in an ~2.5‐fold and ~4.7‐fold increase in the tensile strength and Young's modulus of PLGA, respectively. The thermomechanical behaviors of composite films were investigated by dynamic mechanical analysis. Results indicated that the values of Tg and storage moduli of the PLGA/GO composites were higher than those of the pristine PLGA. The improvement in oxygen barrier properties of composites was presumably attributed to the filler effect of the randomly dispersed GO throughout the PLGA matrix. In this work, we also studied in vitro biodegradation behavior. PLGA/GO composite films were hydrolyzed at 37°C for periods up to 49 days. Because of the presence of GO nanosheets, degradation of composite films took place more slowly with increasing GO amounts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Graphene oxide was bonded onto a silver‐coated stainless‐steel wire using an ionic liquid as the crosslinking agent by a layer‐by‐layer strategy. The novel solid‐phase microextraction fiber was characterized by scanning electron microscopy, energy‐dispersive X‐ray spectroscopy and Raman microscopy. A multilayer graphene oxide layer was closely coated onto the supporting substrate. The thickness of the coating was about 4 μm. Coupled with gas chromatography, the fiber was evaluated using five polycyclic aromatic hydrocarbons (fluorene, anthracene, fluoranthene, 1,2‐benzophenanthrene, and benzo(a)pyrene) as model analytes in direct‐immersion mode. The main conditions (extraction time, extraction temperature, ionic strength, and desorption time) were optimized by a factor‐by‐factor optimization. The as‐established method exhibited a wide linearity range (0.5–200 μg/L) and low limits of determination (0.05–0.10 μg/L). It was applied to analyze environmental water samples of rain and river water. Three kinds of the model analytes were quantified and the recoveries of samples spiked at 10 μg/L were in the range of 92.3–120 and 93.8–115%, respectively. The obtained results indicated the fiber was efficient for solid‐phase microextraction analysis.  相似文献   

17.
It was shown that dipole‐stabilized paramagnetic carbanion lithiated 4,4,5,5‐tetramethyl‐4,5‐dihydro‐1H‐imidazol‐1‐oxyl 3‐oxide can be attached in a nucleophilic manner to either isolated or conjugated aldonitrones of the 2,5‐dihydroimidazole 3‐oxide and 2H‐imidazole 1‐oxide series to afford adducts the subsequent oxidation of which leads to polyfunctional mono‐ and diradicals. According to XRD, at least two polymorphic modifications can be formed during crystallization of the resulting paramagnetic compounds, and for each of them, geometric parameters of the molecules are similar. An EPR spectrum of the diradical in frozen toluene has a complicated lineshape, which can be fairly well reproduced by using X‐ray diffraction structural analysis and the following set of parameters: D=14.9 mT, E=1.7 mT; tensor a(14N)=[0.260 0.260 1.625] mT, two equivalent tensors for the nitronyl nitroxide moiety a(14N)=[0.198 0.198 0.700] mT, and g≈2.007. According to our DFT and ab initio calculations, the intramolecular exchange in the diradical is very weak and most likely ferromagnetic.  相似文献   

18.
This article focuses on a room temperature copper‐free Sonagashira cross‐coupling reaction in ethanol, catalysed by palladium nanoparticles homogeneously deposited on reduced graphene oxide. The catalyst showed efficient catalytic activity towards the said coupling reaction, and was well characterized using various techniques, and could be reused up to six times with almost constant yield of the desired product. The attractions of this protocol are that the reaction completes within short reaction time under ligand‐ and copper‐free conditions and it avoids harsh reaction conditions.  相似文献   

19.
This combined experimental and theoretical study details the vicarious nucleophilic substitution by amination of 5,7‐dinitrobenzotriazol ( 1 ) and 4,6‐dinitrobenzotriazole‐3‐ium‐1‐oxide ( 4 ) with trimethylhydrazinium iodide to afford the new corresponding one‐ and two‐time aminated compounds and investigations of its mechanism by EPR spectroscopy. The preferred position for the first amination is computed by spin density population and verified by X‐ray crystallography. The zwitterionic structure of 4 is investigated in solution by 1H NMR spectroscopy and in solid state by X‐ray diffraction. Furthermore, the crystal structure of 1 is presented. The energetic behavior of the aminated products as well as the starting materials 1 and 4 was investigated, regarding sensitivities and performance.  相似文献   

20.
In vivo studies have shown that the cytoskeleton of cells is very sensitive to changes in temperature and pressure. In particular, actin filaments get depolymerized when pressure is increased up to several hundred bars, conditions that are easily encountered in the deep sea. We quantitatively evaluate the effects of temperature, pressure, and osmolytes on the kinetics of the polymerization reaction of actin by high‐pressure stopped‐flow experiments in combination with fluorescence detection and an integrative stochastic simulation of the polymerization process. We show that the compatible osmolyte trimethylamine‐N‐oxide is not only able to compensate for the strongly retarding effect of chaotropic agents, such as urea, on actin polymerization, it is also able to largely offset the deteriorating effect of pressure on actin polymerization, thereby allowing biological cells to better cope with extreme environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号