首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this project is to study the aromatic properties of various forms (neutral, cationic, and anionic) of selected hydroxypyrones (pyromeconic acid, maltol, and ethylmaltol) and their metalcomplexes with aluminum, gallium, and indium ions. Aromaticity of hydroxypyrone metalcomplexes is important because it can influence the stability of such complexes, which is crucial for their applications in medicinal and environmental chemistry. Results from ten different indices of aromaticity (HOMA, NICS(0), NICS(1), NICSscan, ASEiso, PDI, FLU, Iring, MCI, and KMCI) show that aromaticity in hydroxypyrones decreases in the order cations > neutral molecules > anions. Performed calculations situate the aromaticities of ligands in metalcomplexes close to their respective cations. This means that complexation causes a significant increase of the aromaticity of ligands, which stabilizes formed chelatocomplexes. On the other hand, we clearly show that rings that are involved in binding metal ions are not aromatic. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
This review presents a chronological discussion of the evolution of our conceptual and experimental understanding of aromaticity as pertaining to the borepin ring structure. Borepin is the boron‐containing charge‐neutral analogue of the carbocyclic tropylium ion, and many molecular variations involving the borepin motif have been synthesized over the past half century. The aromaticity of the borepin system has been probed with ultraviolet–visible (UV–vis), photoluminescence and infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, X‐ray crystallography and computational analysis. Recently, the focus of borepin‐containing compounds has shifted to π‐electron materials, building on the foundation of a firm understanding of the physical organic properties of the borepin motif that will allow for electronic fine‐tuning toward desired applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Molecular structures possessing atomic sites that contribute a non‐bonding electron pair to their π system (e.g. nitrogen atoms with sp2 hybridization in pyrroles and anilines) usually exhibit a first absorption band whose solvatochromism is, surprisingly, sensitive only to the polarizability of the medium even though they are dipolar. As shown here, this solvatochromic behavior is a result of the first electronic transition in these compounds occurring from a substantially localized π orbital to a substantially delocalized π* orbital in the molecular structure. The high electronic delocalization present leads to a marked bathochromic band shift as the polarizability of the medium increases. It is especially relevant that this solvatochromism, which is because of the polarizability of the medium, explains the spectral shift that is only because of the redistribution of the electrons of the solvent molecules. It is important to take into account that this electronic redistribution happens instantaneously in this process. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
In comparison with 2,1,3‐benzothia(selena)diazoles, electrochemical oxidation and reduction of their 4,5,6,7‐tetrafluoro derivatives and a number of related compounds were studied by cyclic voltammetry. For nine examples of this class, the first reduction peaks are reversible and corresponding radical anions (RAs) are long‐lived at 295 K in MeCN and especially in DMF. The oxidation peaks were irreversible and corresponding radical cations were not observed. Electrochemically generated RAs were characterized by EPR measurements and DFT calculations at the UB3LYP/6‐31+G(d) level. The spin density distribution in the RAs is analyzed in connection with effects of S substitution by Se and/or H by F. The prospects of the studied RAs in the design and synthesis of magnetically active materials are discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
6.
A combined experimental and theoretical study is presented to understand the novel observed nucleation and early evolution of Ag filaments on β‐Ag2MoO4 crystals, driven by an accelerated electron beam from an electronic microscope under high vacuum. The growth process, chemical composition, and the element distribution in these filaments are analyzed in depth at the nanoscale level using field‐emission scanning electron microscopy (FE‐SEM) and transmission electron microscopy (TEM) with energy‐dispersive spectroscopy (EDS) characterization. To complement experimental results, chemical stability, structural and electronic aspects have been studied systematically using first‐principles electronic structure theory within a quantum theory of atoms in molecules (QTAIM) framework. The Ag nucleation and formation on β‐Ag2MoO4 are a result of structural and electronic changes of the AgO4 tetrahedral cluster as a constituent building block of β‐Ag2MoO4, consistent with Ag metallic formation. The formation of Ag filament transforms the β‐Ag2MoO4 semiconductor from n‐ to p‐type concomitant with the appearance of Ag defects.  相似文献   

7.
Kinetic parameters of the unusual [2π + 2σ + 2σ]‐cycloaddition reactions of quadricyclane ( 1 ) with tetracyanoethylene ( 2 ), 4‐phenyl‐1,2,4‐triazoline‐3,5‐dione ( 3 ), N‐phenylmaleimide ( 4 ), and diethyl azodicarboxylate ( 5 ) are determined experimentally. Additionally, the enthalpies of 1  +  2 reaction in 1,4‐dioxane solution (?236.6 ± 1.0 kJ mol?1) and 1  +  3 reaction in toluene (?255.0 ± 2.8 kJ mol?1) are determined calorimetrically and shown to be the largest in absolute magnitude among all known cycloaddition reactions involving these dienophiles. Solvent effect on the rate of 1 + 3 reaction in 11 solvents is studied and found to be moderate and similar to that of the conventional Diels‐Alder and ene reactions. The difference in the reaction rate constants of 1 with different dienophiles can be up to 9 orders of magnitude and is mainly caused by the difference in activation enthalpies. This difference is not correlated with the standard enthalpies of reactions and is likely the result of high sensitivity of the [2π + 2σ + 2σ] reaction rates to the energy of donor‐acceptor interactions between the reactants.  相似文献   

8.
The host–guest complexes formed with [6]cycloparaphenyleneacetylene ([6]CPPA) and its anthracene‐containing derivative ([6]CPPAs) hosts and fullerene C70 guest were explored by density functional calculations. Besides two previously reported configurations in which C70 guest is standing or lying in the cavity of the host, we found a new kind of configuration in which C70 guest is half‐lying in the cavity of the host. More interestingly, the calculated results revealed that the fine‐tuning deformations occur readily during the formations of the complexes, suggesting that both [6]CPPA and [6]CPPAs are highly elastic host molecules. The large host–guest binding energies indicate that both two host molecules, [6]CPPA and [6]CPPAs, have excellent encapsulation ability for C70 guest, and the [6]CPPAs even has much better encapsulation ability for C70 than [6]CPPA. Furthermore, the host–guest interactions regions were detected and visualized in real space based on the electron density and reduced density gradient. Additionally, 1H NMR spectra of those three different kinds of configurations mentioned earlier have been calculated with gage‐independent atomic orbital method, which may be helpful for further experimental characterizations in future. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Complete tautomeric equilibria and π‐electron delocalization were studied at the B3LYP/6‐311+G** level for neutral purine ( P ) and its charged radicals ( P +? and P ??). All possible nine tautomers (four NH and five CH forms) and all possible 36 tautomeric equilibria (six NiH → NkH, twenty NH → CH, and ten CiH → CkH conversions) were considered. The greatest variations of the tautomeric equilibrium constants (as pKT) were observed for the NH → CH conversions when proceeding from neutral to reduced purine ( P + e → P ??). These variations completely change the tautomeric preferences. One‐electron oxidation ( P ? e → P +?) has considerably smaller effect on the pKT values and does not change the tautomeric preferences. π‐Electron delocalization depends on the position of the moving proton and on the type of the electron transfer. For individual tautomers, some linear relations between the relative stabilities and the HOMA (harmonic oscillator model of aromaticity) indices occur for neutral and oxidized purine. For reduced purine, a scatter plot is found. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
B3LYP/6–311+G** optimization was carried out for azulene and its analogs, in which CH? CH? CH fragment was replaced with O···X···O (X = H or Li). π‐electron delocalization in four possible derivatives with H‐bonding and three possible derivatives with Li‐bonding was described by the use of HOMA index. All derivatives with Li‐bonding exhibit high π‐electron delocalization similar to that found for azulene. Among four H‐bonded systems, two exhibit lower π‐electron delocalization (HOMA < 0.39) and higher total electron energy than the other two derivatives. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
We have isolated two isomeric solids 1 and 2 of N,N′‐bis(3,5‐dichlorosalicylidene)‐2,2′‐ethylenedianiline and characterized by IR, UV/Vis, X‐ray powder diffraction, thermogravimetric analysis/differential thermal analysis, and X‐ray crystallography. Although the solids are same formulas, each shows different colors and crystal structures. Orange solid ( 1 ) shows endo conformation while yellow solid ( 2 ) exhibits exo form depending on packing modes. UV/Vis spectra of 1 and 2 appear very similar patterns in the solid state; however, the bands of 1 are slightly red‐shifted compared with those of 2 . 1 displays a strong fluorescent emission band at ~582 nm while 2 shows an intense fluorescent signal at ~563 nm. The charge density populations of 1 and 2 have been studied by computational simulations using density functional theory at pbe1pbe/6‐311G** level. The calculated highest occupied molecular orbital and lowest unoccupied molecular orbital energies of 1 and 2 confirm that charge transfer occurs within the organic molecules. The energy difference of HOMO‐LUMO in 1 is smaller slightly than that of 2 about 0.05 eV (~17 nm). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Amaranth (E123, Food Red 9, FD & C Red 2) is a sulfonated azo dye used as a color additive in foodstuffs, pharmaceuticals and cosmetics. FT‐IR and FT‐Raman spectra of amaranth were recorded and analyzed. Density functional theory (DFT) calculations were performed to derive the equilibrium geometry, vibrational wavenumbers, intensities and first hyperpolarizability. The results of the optimized molecular structure gave clear evidence for the intramolecular charge transfer (ICT) and intramolecular hydrogen bonding in the molecule. Azo stretching wavenumbers are lowered owing to conjugation and π‐electron delocalization. Time‐dependent density functional theory (TD‐DFT) calculations of the electronic spectra were performed on the optimized structure and compared with the experimental UV‐visible spectrum. Vibrational spectra, natural bonding orbitals (NBO) analysis and optimized geometry indicate C H·N hydrogen bonding in the molecule. The first hyperpolarizability of the molecule was calculated. The optical nonlinearity of the dye is due to the donation of the electron density from the hydroxyl group of the conjugated system via naphthalene ( 2 ) ring into π*‐orbital of the azo moiety. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Fourier transform Raman and IR as well as UV–visible spectra of the phenothiazine dye Azure A chloride, 3‐amino‐7‐(dimethylamino) phenothiazin‐5‐ium chloride were recorded and analyzed. The spectral interpretation was done following full structure optimization and vibrational wavenumber calculations based on the density functional theory (DFT) using the standard B3LYP/6‐31G(d) basis set. The N H stretching wavenumber is found to be lowered owing to intermolecular N H···S hydrogen bonding. The downshift of C H stretching wavenumber is discussed. The first hyperpolarizability of the dye is calculated. Time‐dependent density functional theory (TD‐DFT) calculations of electronic spectra were performed on the optimized structure and compared with the experimental UV–visible spectrum. The atomic net charges of the molecule reveal the  M effect of the nitrogen atoms in the molecule. Stability of the molecule arising from hyperconjugative interactions leading to its nonlinearity and bioactivity, charge delocalization and mesomeric effects have been analyzed using natural bond orbital (NBO) analysis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The reaction of 3,5‐bis(methoxycarbonyl)‐4‐oxo‐4H‐pyrazole 1,2‐dioxide (1a) with 1,3,5‐cycloheptatriene (2b) gave a mixture of the novel endo‐[4 + 6]‐cycloadduct (4ab), anti‐exo‐[4 + 2]‐cycloadduct (5ab), and the heterocage (6ab) derived from the intramolecular 1,3‐dipolar cycloaddition reaction of the syn‐endo‐[4 + 2]‐cycloadduct. Analogous endo‐[4 + 6] selectivity in 1,3‐dipolar cycloadditions has not been reported previously. The X‐ray analysis indicates that 6ab has a very long Nsp3–Nsp3 bond distance of 1.617(4) Å. The cycloaddition behaviour is discussed on the basis of transition‐state structures optimized at the B3LYP/6‐31G(d) level of theory, from which predictions of the peri‐, regio‐, and stereoselectivities agreed well with the experimental results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Unsaturated fatty acid methyl esters are ubiquitous in biodiesel fuels. The C = C double bond greatly affects the combustion characteristics of biodiesel, especially its ignition behavior at low temperatures. In this work, we report detailed theoretical study on the mechanism and kinetics of the hydrogen abstraction reactions of linear unsaturated C6 methyl esters with hydroperoxy radical (HO2), which play a critical role in the low‐temperature combustion of biodiesel. Reaction profiles are obtained via intrinsic reaction coordinate (IRC) analysis including the formation of reactant complexes and product complexes at the entrance and exit channels, respectively. The potential energy surfaces are explored at the CBS‐QB3 level. The following β‐scission reactions of the forming radicals are also investigated at the same level of theory. The high‐pressure limit rate constants for all the reactions in the temperature range from 500 to 2000 K are calculated via conventional transition‐state theory with quantum tunneling effect and fitted to the modified Arrhenius expression.  相似文献   

17.
Density functional theory calculations were performed on alkenols and alkynols at the PBE1PBE/6‐311 + G(d,p) level with the inclusion of solvent (benzene) effects by the integral‐equation‐formalism polarizable continuum model (IEFPCM). For the smaller molecules, conformers in which the OH group is in the vicinity of the double or triple bond are preferred, but this preference falls as the alkyl chain is lengthened. The solvent effect on the relative Gibbs energies of different conformers is irregular, and in only two cases, 3‐buten‐1‐ol and 3‐butyn‐1‐ol, is there marked levelling. Gauge‐including atomic orbital calculations, based on the PBE1PBE/6‐311 + G(d,p) geometries but using a larger basis set, cc‐pVTZ, give nuclear magnetic resonance shifts for all the protons in each conformer. Overall shifts are calculated by weighing these according to the conformer population. Calculated values are well correlated with experimental data from high‐dilution spectra in the same solvent, ranging from about 0.4 to 5.8 ppm, with a slope of 1.09 ± 0.01. Calculations on some alcohols with hetero‐atom substituents confirm that these also prefer gauche (synclinal) conformers in the gas phase, with a less marked preference in benzene. The nuclear magnetic resonance shifts, however, are calculated to be on average over 0.8 ppm higher than observed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The σ–σ* transition of C–C bond in CnF2n+2 molecules was studied by deep UV resonance Raman spectroscopy. With the C–C σ bond selectively excited by the deep UV laser at 177.3 nm, the resonance Raman spectra of CnF2n+2 molecules were obtained on our home‐assembled deep UV Raman spectrograph. The Raman bands at 1299, 1380 and 2586 cm−1 due to the C–C skeletal stretching modes are evidently enhanced owing to the resonance Raman effect. Based on the resonance Raman spectra and theoretical calculation results, it is proposed that the electronic geometry of CnF2n+2 molecules at the σσ* excited state is displaced along the directions perpendicular and parallel to the C–C skeleton, and the excited C–C bond is not dissociative due to the delocalization of the excited electron in σ* orbital. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Because of their unique visual optic and electronic properties, substituted quinones are commonly used as dyes and pigments; nevertheless, a theoretic background of relationship between the structures and optical properties of such compounds seems to be still undeveloped. Two crystalline forms of 2‐methoxynaphth‐1‐yl‐naphthoquinone (MNQ) have been synthesized and characterized by means X‐ray, NMR, UV–VIS, as well as, MS spectroscopy. The interpretation of intriguing optical properties of two crystalline forms of MNQ, based on detailed spectral and structural characterization, as well as, DFT and MP2 computations clearly connects the conformation of the molecules with their optical and electronic properties. Thus, flatter conformation, stabilized by crystal net force, favours the intense electron density transition from auxochrome to chromophore moiety (which corresponds excitation from HOMO to LUMO), as well as, favours the π‐stacking interaction, that eventually results in colour enhancement. At the same time, small molecules of solvents included into the crystal net allow molecules of arylnaphthoquinones to adopt less rigid conformation what has a dramatic optical outcome. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Synthetic routes have been developed to a number of (thio) squaraine dyes containing the residues of CH‐acids at the central cyclobutene ring. The electronic and spatial structure as well as the chemical conversions and optical behaviour of the compounds obtained have been studied both theoretically and by X‐ray diffraction analysis, 1H NMR and electronic spectroscopy. As shown, the electronic nature and sterical characteristics of the central ring substituents give rise to some general conformational features and crystal packing regularities and also govern the spectral position of the first π–π* absorption band. The structure–property relationships established in the study provide guidance for the purposeful design of deeply coloured (thio) squaraines. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号