共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis and characterization of hyperbranched amphiphilic block copolymers prepared via self‐condensing RAFT polymerization 下载免费PDF全文
Maria Rikkou‐Kalourkoti Marios Elladiou Costas S. Patrickios 《Journal of polymer science. Part A, Polymer chemistry》2015,53(11):1310-1319
Four families of hyperbranched amphiphilic block copolymers of styrene (Sty, less polar monomer) and 2‐vinylpyridine (2VPy, one of the two more polar monomers) or 4‐vinylpyridine (4VPy, the other polar monomer) were prepared via self‐condensing vinyl reversible addition‐fragmentation chain transfer polymerization (SCVP‐RAFT). Two families contained 4VPy as the more polar monomer, one of which possessing a Sty‐b‐4VPy architecture, and the other possessing the reverse block architecture. The other two families bore 2VPy as the more polar monomer and had either a 2VPy‐b‐Sty or a Sty‐b‐2VPy architecture. Characterization of the hyperbranched block copolymers in terms of their molecular weights and compositions indicated better control when the VPy monomers were polymerized first. Control over the molecular weights of the hyperbranched copolymers was also confirmed with the aminolysis of the dithioester moiety at the branching points to produce linear polymers with number‐average molecular weights slightly greater than the theoretically expected ones, due to recombination of the resulting thiol‐terminated linear polymers. The amphiphilicity of the hyperbranched copolymers led to their self‐assembly in selective solvents, which was probed using atomic force microscopy and dynamic light scattering, which indicated the formation of large spherical micelles of uniform diameter. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1310–1319 相似文献
2.
Shrinivas Venkataraman Karen L. Wooley 《Journal of polymer science. Part A, Polymer chemistry》2007,45(23):5420-5430
Reversible addition–fragmentation chain transfer (RAFT) polymerization has emerged as one of the important living radical polymerization techniques. Herein, we report the polymerization of di(ethylene glycol) 2‐ethylhexyl ether acrylate (DEHEA), a commercially‐available monomer consisting of an amphiphilic side chain, via RAFT by using bis(2‐propionic acid) trithiocarbonate as the chain transfer agent (CTA) and AIBN as the radical initiator, at 70 °C. The kinetics of DEHEA polymerization was also evaluated. Synthesis of well‐defined ABA triblock copolymers consisting of poly(tert‐butyl acrylate) (PtBA) or poly(octadecyl acrylate) (PODA) middle blocks were prepared from a PDEHEA macroCTA. By starting from a PtBA macroCTA, a BAB triblock copolymer with PDEHEA as the middle block was also readily prepared. These amphiphilic block copolymers with PDEHEA segments bearing unique amphiphilic side chains could potentially be used as the precursor components for construction of self‐assembled nanostructures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5420–5430, 2007 相似文献
3.
4.
Maria D. Rikkou Maria Kolokasi Krzysztof Matyjaszewski Costas S. Patrickios 《Journal of polymer science. Part A, Polymer chemistry》2010,48(9):1878-1886
Conetworks based on end‐linked homopolymers and amphiphilic gradient copolymers were synthesized by the atom transfer radical polymerization (ATRP) of 2‐(dimethylamino)ethyl methacrylate (DMAEMA, hydrophilic monomer), methyl methacrylate (MMA, hydrophobic monomer), and ethylene glycol dimethacrylate (EGDMA, hydrophobic cross‐linker). Sequential, rather than step‐wise polymerizations, were performed to enhance the livingness of the polymerization, particularly for the end‐linking step, and to ultimately obtain conetworks based on gradient rather than pure block copolymers. Amphiphilic conetworks based on end‐linked MMA‐DMAEMA‐MMA gradient copolymers of different compositions were successfully synthesized as confirmed by the narrow molecular weight distributions of the linear precursors, the rigidity of the amphiphilic conetwork products and the low sol‐fraction extracted from the conetworks. Similarly successful was the ATRP synthesis of an end‐linked conetwork based on a DMAEMA‐MMA statistical copolymer and of a randomly cross‐linked conetwork that resulted from the simultaneous terpolymerization of DMAEMA, MMA and EGDMA. An amphiphilic conetwork based on an end‐linked DMAEMA‐MMA‐DMAEMA gradient copolymer presented a less rigid, mucous‐like, texture. The degrees of swelling (DS) in tetrahydrofuran of all the conetworks were higher than those measured in pure water, whereas the aqueous DS values increased by lowering the pH and increasing the DMAEMA content of the conetworks. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1878–1886, 2010 相似文献
5.
Zhiping Peng Dandan Wang Xinxing Liu Zhen Tong 《Journal of polymer science. Part A, Polymer chemistry》2007,45(16):3698-3706
Triblock copolymers of poly(styrenesulfonate)‐b‐poly(ethylene glycol)‐b‐poly(styrenesulfonate) with narrow molecular weight distribution (Mw/Mn = 1.28–1.40) and well‐defined structure have been synthesized in aqueous solution at 70 °C via reversible addition‐fragmentation chain transfer polymerization. Poly(ethylene glycol) (PEG) capped with 4‐cyanopentanoic acid dithiobenzoate end groups was used as the macro chain transfer agent (PEG macro‐CTA) for sole monomer sodium 4‐styrenesulfonate. The reaction was controllable and displayed living polymerization characteristics and the triblock copolymer had designed molecular weight. The reaction rate depended strongly on the CTA and initiator concentration ratio [CTA]0/[ACPA]0: an increase in [CTA]0/[ACPA]0 from 1.0 to 5.0 slowed down the polymerization rate and improved the molecular weight distribution with a prolonged induction time. The polymerization proceeded, following first‐order kinetics when [CTA]0/[ACPA]0 = 2.5 and 5.0. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3698–3706, 2007 相似文献
6.
Adem Zengin Ugur Tamer Tuncer Caykara 《Journal of polymer science. Part A, Polymer chemistry》2013,51(16):3420-3428
A reversible addition‐fragmentation chain transfer (RAFT) agent was directly anchored onto superparamagnetic Fe3O4 nanoparticles (SPNPs) in a simple procedure using a ligand exchange reaction of 2‐[(dodecylsulfanylcarbonylthiolsulfanyl) propionic acid] (DCPA) with oleic acid initially present on the surface of Fe3O4 nanoparticles. The DCPA‐modified SPNPs were then used for the surface‐mediated RAFT polymerization of di(ethylene glycol) ethyl ether acrylate and (oligoethylene glycol) methyl ether acrylate to fabricate structurally well‐defined hybrid SPNPs with temperature‐responsive poly[di(ethylene glycol) ethyl ether acrylate‐co‐(oligoethylene glycol) methyl ether acrylate] shell and magnetic Fe3O4 core. Evidence of a well‐controlled surface‐mediated RAFT polymerization was gained from a linear increase of number‐average molecular weight with overall monomer conversions and relatively narrow polydispersity indices of the copolymers grown from the SPNPs. The resultant hybrid nanoparticles exhibited superparamagnetic property with a saturation magnetization of 55.1–19.4 emu/g and showed a temperature‐responsive phenomenon as the temperature changed between 25 and 40 °C. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3420–3428 相似文献
7.
Meiliana Siauw Brian S. Hawkett Sébastien Perrier 《Journal of polymer science. Part A, Polymer chemistry》2012,50(1):187-198
We demonstrate the ability of the reversible addition‐fragmentation chain transfer (RAFT) process to produce well‐defined block co‐oligomers for which each block has a narrow molecular weight distribution and degrees of polymerization ranging from 2 to 33. We exploit RAFT versatility to control the structure of the co‐oligomers and produce amphiphilic block co‐oligomers of styrene, acrylic acid and ethylene glycol. A detailed study shows that the amphiphilic diblock co‐oligomers self‐assemble in solution and form micelles or particles, depending on the hydrophobicity of the diblock. These oligomers present an excellent alternative to traditional amphiphilic molecules, by combining the properties of polymers with those of single molecule surfactants. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
8.
Zhongfan Jia Xuewei Xu Qiang Fu Junlian Huang 《Journal of polymer science. Part A, Polymer chemistry》2006,44(20):6071-6082
An amphiphilic multiblock copolymer [poly(ethylene oxide)‐b‐polystyrene]n [(PEO‐b‐PS)n] is synthesized by using trithiocarbonate‐embedded PEO as macro‐RAFT agent. PEO with four inserted trithiocarbonate (Mn = 9200 and Mw/Mn = 1.62) groups is prepared first by condensation of α, ω‐dihydroxyl poly(ethylene oxide) with S, S′‐Bis(α, α′‐dimethyl‐α″‐acetic acid)‐trithiocarbonate (BDATC) in the presence of pyridine, then a series of goal copolymers with different St units (varied from 25 to 218 per segment) are obtained by reversible addition‐fragmentation chain transfer (RAFT) polymerization. The synthesis process is monitored by size exclusion chromatography (SEC), 1H NMR and FT‐IR. The self‐assembled morphologies of the copolymers are strongly dependent of the length of PS block chains when the chain length of PEO is fixed, some new morphologies as large leaf‐like aggregates (LLAs), large octopus‐like aggregates (LOAs), and coarse‐grain like micelles (CGMs) are observed besides some familiar aggregates as large compound vesicles (LCVs), lamellae and rods, and the effect of water content on the morphologies is also discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6071–6082, 2006 相似文献
9.
Di Zhou Xiulin Zhu Jian Zhu Zhenping Cheng 《Journal of polymer science. Part A, Polymer chemistry》2008,46(18):6198-6205
Fluorescence end‐labeled polystyrene (PS) with heteroaromatic carbazole or indole group were prepared conveniently via reversible addition‐fragmentation chain transfer (RAFT) polymerization using dithiocarbamates, ethyl 2‐(9H‐carbazole‐9‐carbonothioylthio)propanoate (ECCP) and benzyl 2‐phenyl‐1H‐indole‐1‐carbodithioate (BPIC) as RAFT agents. The end functionality of obtained PS with different molecular weights was high. The steady‐state and the time‐resolved fluorescence techniques had been used to study the fluorescence behaviors of obtained end‐labeled PS. The fluorescence of dithiocarbamates resulting PS in solid powder cannot be monitored; however, they exhibited structured absorptions and emissions in solvent DMF and the fluorescence lifetimes of PS had no obvious change with molecular weights increasing. These observations suggested that the polymer chains were possibly stretched adequately in DMF, that is, the fluorescence end group was exposed into solvent molecules and little quenching of excited state occurred upon incorporation into polymer chain. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6198–6205, 2008 相似文献
10.
Sbastien Perrier Pittaya Takolpuckdee 《Journal of polymer science. Part A, Polymer chemistry》2005,43(22):5347-5393
Among the living radical polymerization techniques, reversible addition–fragmentation chain transfer (RAFT) and macromolecular design via the interchange of xanthates (MADIX) polymerizations appear to be the most versatile processes in terms of the reaction conditions, the variety of monomers for which polymerization can be controlled, tolerance to functionalities, and the range of polymeric architectures that can be produced. This review highlights the progress made in RAFT/MADIX polymerization since the first report in 1998. It addresses, in turn, the mechanism and kinetics of the process, examines the various components of the system, including the synthesis paths of the thiocarbonyl‐thio compounds used as chain‐transfer agents, and the conditions of polymerization, and gives an account of the wide range of monomers that have been successfully polymerized to date, as well as the various polymeric architectures that have been produced. In the last section, this review describes the future challenges that the process will face and shows its opening to a wider scientific community as a synthetic tool for the production of functional macromolecules and materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43:5347–5393, 2005 相似文献
11.
Sumei Wang Zhenping Cheng Jian Zhu Zhengbiao Zhang Xiulin Zhu 《Journal of polymer science. Part A, Polymer chemistry》2007,45(22):5318-5328
A three‐step process, combining nitroxide‐mediated polymerization (NMP) and reversible addition‐fragmentation chain transfer (RAFT) polymerization techniques, for synthesizing well‐defined amphiphilic and thermosensitive graft copolymers with fluorescence poly(styrene‐co‐(p‐chloromethylstyrene))‐g‐poly(N‐isopropylacrylamide) (P(St‐co‐(p‐CMS))‐g‐PNIPAAM), was conducted. Firstly, the NMP of styrene (St) and p‐chloromethylstyrene (p‐CMS) were carried out using benzoyl peroxide (BPO) as the initiator to obtain the random copolymers of P(St‐co‐(p‐CMS)). Secondly, the random copolymers were converted into macro‐RAFT agents with fluorescent carbazole as Z‐group through a simple method. Then the macro‐RAFT agents were used in the RAFT polymerization of N‐isopropylacrylamide (NIPAAM) to prepare fluorescent amphiphilic graft copolymers P(St‐co‐(p‐CMS))‐g‐PNIPAAM with controlled molecular weights and well‐defined structures. The copolymers obtained were characterized by gel permeation chromatography (GPC), 1H nuclear magnetic resonance (NMR) spectroscopy, and FT‐IR spectroscopy. The size of self‐assembly micelles of the resulting graft copolymers in deionized water was studied by high performance particle sizer (HPPS), the results showed that the Z‐average size of the micelles increased with the increase of molecular weights of PNIPAAM in side chains. The aqueous solution of the micelles prepared from P(St‐co‐(p‐CMS))‐g‐PNIPAAM using a dialysis method showed a lower critical solution temperature (LCST) at ~ 27.5 °C, which was below the value of NIPAAM homopolymer (32 °C). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5318–5328, 2007 相似文献
12.
Cui‐Wei Wang Chao Liu Xiao‐Wei Zhu Zi‐Ying Yang Hong‐Fan Sun De‐Ling Kong Jing Yang 《Journal of polymer science. Part A, Polymer chemistry》2016,54(3):407-417
Well‐defined star‐shaped hydrophobic poly(ε‐caprolactone) (PCL) and hydrophilic poly(ethylene glycol) (PEG) amphiphilic conetworks (APCNs) have been synthesized via the combination of ring opening polymerization (ROP) and click chemistry. Alkyne‐terminated six arm star‐shaped PCL (6‐s‐PCLx‐C?CH) and azido‐terminated PEG (N3‐PEG‐N3) are characterized by 1H NMR and FT‐IR. The swelling degree of the APCNs is determined both in water and organic solvent. This unique property of the conetworks is dependent on the nanophase separation of hydrophilic and hydrophobic phases. The morphology and thermal behaviors of the APCNs are investigated by SEM and DSC respectively. The biocompatibility is determined by water soluble tetrazolium salt reagents (WST‐1) assay, which shows the new polymer networks had good biocompatibility. Through in vitro release of paclitaxel (PTX) and doxorubicin (DOX), the APCNs is confirmed to be promising drug depot materials for sustained hydrophobic and hydrophilic drugs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 407–417 相似文献
13.
Dražen Pavlović Qin Lou Jeffrey G. Linhardt Jay F. Künzler Devon A. Shipp 《Journal of polymer science. Part A, Polymer chemistry》2017,55(20):3387-3394
Triblock copolymers of N‐vinylpyrrolidone (NVP) and polydimethylsiloxane (PDMS) were synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization using two different types of difunctional telechelic PDMS‐based dixanthate macroinitiators. The incorporation of PDMS into the triblock copolymers was evidenced by 1H NMR spectroscopy and varied between 4 mol % and as high as 20 mol %, dependent on reaction time and monomer conversion. The copolymer homogeneity was characterized in terms of molecular weight distribution determined by GPC to estimate the level of control over the chain length. Monomodal molecular weight distributions were observed, and 1H NMR spectroscopy indicated the copolymers had number average molecular weights (Mn) ranging between 28,000 and 160,000 g/mol. In addition, thin film phase separation and critical micelle concentrations for these copolymers were analyzed via transmission electron microscopy and surface tension measurements, respectively. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3387–3394 相似文献
14.
Christopher Barner‐Kowollik Philipp Vana John F. Quinn Thomas P. Davis 《Journal of polymer science. Part A, Polymer chemistry》2002,40(8):1058-1063
A novel experimental procedure is presented that allowed probing of reversible addition–fragmentation chain‐transfer (RAFT) free‐radical polymerizations for long‐lived species. The new experimental sequence consisted of gamma irradiation of a mixture of initial RAFT agent (cumyl dithiobenzoate) and monomer at ambient temperature, a subsequent predetermined waiting period without initiation source also at ambient temperature, and then heating of the reaction mixture to a significantly higher temperature. After each sequence step, the monomer conversion and molecular weight distribution were determined, indicating that controlled polymer formation occurs only during the heating period. The results indicated that stable intermediates (either radical or nonradical in nature) are present in such experiments because thermal self‐initiation of the monomer can be excluded as the reason for polymer formation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1058–1063, 2002 相似文献
15.
Dražen Pavlović Jeffrey G. Linhardt Jay F. Künzler Devon A. Shipp 《Journal of polymer science. Part A, Polymer chemistry》2008,46(21):7033-7048
The synthesis and spectroscopic characterization of a new family of amphiphilic multiblock and triblock copolymers is described. The synthetic methodology rests on the preparation of telechelic multifunctional and difunctional chain transfer agents easily available in two synthetic steps from commercially available polydimethylsiloxane‐containing starting materials. Telechelic polymers thus synthesized are used as macromolecular chain transfer agents in the reversible addition fragmentation chain transfer (RAFT) polymerization of N,N‐dimethylacrylamide (DMA) enabling the synthesis of (AB)n‐type multiblock and ABA‐type triblock copolymers of varying compositions possessing monomodal molecular weight distribution. (AB)n multiblock copolymers [(PDMA‐b‐PDMS)n] were prepared with between 52 and 95 wt % poly(dimethylacrylamide) with number average molecular weights (Mn) between 14,000 and 86,000 (polydispersities of 1.20–2.30). On the other hand, ABA block copolymers with DMA led to amphiphilic block copolymers (PDMA‐b‐PDMS‐b‐PDMA) with Mn values between 9000 and 44,000 (polydispersities of 1.24–1.62). © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7033–7048, 2008 相似文献
16.
Vincent Lima Xulin Jiang Jos Brokken‐Zijp Peter J. Schoenmakers Bert Klumperman Rob Van Der Linde 《Journal of polymer science. Part A, Polymer chemistry》2005,43(5):959-973
The reversible addition–fragmentation chain transfer (RAFT) polymerization technique has been employed to synthesize linear α,ω ‐telechelic polymers with either hydroxyl or carboxyl end groups. Methyl methacrylate, butyl methacrylate, and butyl acrylate were polymerized with RAFT polymerization. The polymerizations exhibited the usual characteristics of living processes. Telechelic polymethacrylates were obtained from a hydroxyl monofunctional RAFT polymer with a two‐step chain‐end modification procedure of the dithioester end group. The procedure consisted of an aminolysis followed by a Michael addition on the resulting thiol. The different steps of the procedure were followed by detailed analysis. It was found that this route was always accompanied by side reactions, resulting in disulfides and hydrogen‐terminated polymer chains as side products next to the hydroxyl‐terminated telechelic polymers. Telechelic poly(butyl acrylates) with carboxyl end groups were produced in a single step procedure with difunctional trithiocarbonates as RAFT agents. The high yield in terms of end group functionality was confirmed by a new critical‐liquid‐chromatography method, in which the polymers were separated based on acid‐functionality and by mass spectrometry analysis. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 959–973, 2005 相似文献
17.
Chun‐Yan Hong Ye‐Zi You Cai‐Yuan Pan 《Journal of polymer science. Part A, Polymer chemistry》2006,44(8):2419-2427
In this study, we grafted water‐soluble biocompatible polymer, poly(N‐(2‐hydroxypropyl)methacrylamide) (PHPMA), onto the surface of multi‐walled carbon nanotubes (MWNTs). The reversible addition‐fragmentation chain transfer (RAFT) agents, dithioesters, were successfully immobilized onto the surface of MWNTs first, PHPMA chains were then subsequently grafted onto MWNTs via RAFT polymerization by using dithioesters immobilized on MWNTs as RAFT agent. FTIR, XPS, 1H NMR, Raman and TGA were used to characterize the resulting products and to determine the content of water‐soluble PHPMA chains in the product. The MWNTs grafted with PHPMA chains have good solubility in distilled water, PBS buffer, and methanol. TEM images of the samples provide direct evidence for the formation of a nanostructure that MWNTs coated with polymer layer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2419–2427, 2006 相似文献
18.
Lei Feng Kevin A. Cavicchi Bryan C. Katzenmeyer Chrys Wesdemiotis 《Journal of polymer science. Part A, Polymer chemistry》2011,49(23):5100-5108
The synthesis of chain‐end sulfonated polystyrene [PS (ω‐sulfonated PS)] by reversible addition fragmentation chain transfer (RAFT) polymerization followed by postpolymerization modification was investigated by two methods. In the first method, the polymer was converted to a thiol‐terminated polymer by aminolysis. This polymer was then sulfonated by oxidation of the thiol end‐group with m‐chloroperoxybenzoic acid (m‐CPBA) to produce a sulfonic acid end‐group. In the second method, the RAFT‐polymerized polymer was directly sulfonated by oxidation with m‐CPBA. After purification by column chromatography, ω‐sulfonated PS was obtained by both methods with greater than 95% end‐group functionality as measured by titration. The sulfonic acid end‐group could be neutralized with various ammonium or imidazolium counter ions through acid–base or ionic metathesis reactions. The effect of the ionic end‐groups on the glass transition temperature of the PS was found to be consistent with what is known for PS ionomers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
19.
Christy D. Petruczok Richard F. Barlow Devon A. Shipp 《Journal of polymer science. Part A, Polymer chemistry》2008,46(21):7200-7206
The synthesis of poly(tert‐butyl acrylate‐block‐vinyl acetate) copolymers using a combination of two living radical polymerization techniques, atom transfer radical polymerization (ATRP) and reversible addition‐fragmentation chain transfer (RAFT) polymerization, is reported. The use of two methods is due to the disparity in reactivity of the two monomers, viz. vinyl acetate is difficult to polymerize via ATRP, and a suitable RAFT agent that can control the polymerization of vinyl acetate is typically unable to control the polymerization of tert‐butyl acrylate. Thus, ATRP was performed to make poly(tert‐butyl acrylate) containing a bromine end group. This end group was subsequently substituted with a xanthate moiety. Various spectroscopic methods were used to confirm the substitution. The poly(tert‐butyl acrylate) macro‐RAFT agent was then used to produce (tert‐butyl acrylate‐block‐vinyl acetate). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7200–7206, 2008 相似文献
20.
Xanthates designed for the preparation of N‐Vinyl pyrrolidone‐based linear and star architectures via RAFT polymerization 下载免费PDF全文
Iain J. Johnson Ezat Khosravi Osama M. Musa Rose E. Simnett Ahmed M. Eissa 《Journal of polymer science. Part A, Polymer chemistry》2015,53(6):775-786
Novel xanthate RAFT agents, RAFT1‐5, designed for the preparation of a range of novel N‐vinyl pyrrolidone‐based polymeric materials with linear and star architectures via RAFT polymerization are reported. Ethyl pyrrolidone moiety was included in the structures of the xanthates as a part of R (RAFT1‐3) or Z group (RAFT4) to evaluate their effect on the polymerization and to impart homogeneity in the resulting products. The xanthates were designed to fragment to give primary (RAFT1), secondary (RAFT2 and 4), and tertiary radicals (RAFT 3) allowing evaluation of their effect on polymerization. RAFT5 was designed to produce polymeric materials with four‐arm architectures. RAFT1 showed comparable characteristics as conventional radical polymerization. RAFT2 and RAFT4 exhibited living/controlled polymerizations, owing to the combination of stable secondary radical species and incorporation of ethyl pyrrolidone moiety as the R and Z group, respectively. RAFT2 and RAFT5 gave first examples of random copolymers of NVP and VAc with linear and four‐arm star architectures, all exhibiting monomodal distributions and narrow dispersity. The four‐arm PVAc star was used as a macroCTA to synthesize amphiphilic four‐arm star PVAc‐block‐PNVP. The TEM investigation showed the formation of spherical micelles with an average diameter of about 60 nm. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 775–786 相似文献