首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of nanometer‐sized gaps between silver nanoparticles is critically important for optimal enhancement in surface‐enhanced Raman scattering (SERS). A simple approach is developed to generate nanometer‐sized cavities in a silver nanoparticle thin film for use as a SERS substrate with extremely high enhancement. In this method, a submicroliter volume of concentrated silver colloidal suspension stabilized with cetyltrimethylammonium bromide (CTAB) is spotted on hydrophobic glass surfaces prepared by the exposure of the glass to dichloromethysilane vapors. The use of a hydrophobic surface helps the formation of a more uniform silver nanoparticle thin film, and CTAB acts as a molecular spacer to keep the silver nanoparticles at a distance. A series of CTAB concentrations is investigated to optimize the interparticle distance and aggregation status. The silver nanoparticle thin films prepared on regular and hydrophobic surfaces are compared. Rhodamine 6G is used as a probe to characterize the thin films as SERS substrates. SERS enhancement without the contribution of the resonance of the thin film prepared on the hydrophobic surface is calculated as 2×107 for rhodamine 6G, which is about one order of magnitude greater than that of the silver nanoparticle aggregates prepared with CTAB on regular glass surfaces and two orders of magnitude greater than that of the silver nanoparticle aggregates prepared without CTAB on regular glass surfaces. A hydrophobic surface and the presence of CTAB have an increased effect on the charge‐transfer component of the SERS enhancement mechanism. The limit of detection for rhodamine 6G is estimated as 1.0×10?8 M . Scanning electron microscopy and atomic force microscopy are used for the characterization of the prepared substrate.  相似文献   

2.
The immobilisation of nanoparticles from solution at a solid surface followed by anodic stripping voltammetry is a simple technique allowing the analysis of nanoparticle concentrations and identity. We report that the modification of gold electrodes with meso‐2,3‐dimercaptosuccinic acid (DMSA) shows a useful increase in the adsorption rate of silver nanoparticles on a gold substrate showing that the chemical modification of the electrode is analytically advantageous.  相似文献   

3.
The sequential layer by layer self‐assembly of block copolymer (BCP) nanopatterns is an effective approach to construct 3D nanostructures. Here large‐scale highly ordered metal nano­arrays prepared from solvent annealed thin films of polystyrene‐block‐poly(2‐vinylpyridine) (PS‐b‐P2VP) diblock copolymer are used to direct the assembly of the same BCP. The influence of initial loading concentration of metal precursor, the type of metal nanoparticle (gold, platinum, and silver), and the nanoparticle–substrate interaction on the directed assembly behavior of the upper BCP layer have been focused. It is found that the upper BCP film can be completely directed by the gold nanoarray with P2VP domain exclusively located between two adjacent gold nanowires or nanodots, which behaves the same way as on the platinum nanoarray. While the silver nanoarray can be destroyed during the upper BCP self‐assembly with the silver nanoparticles assembled into the P2VP domain. Based on the discussions of the surface energy of nanoparticles and the interplay between nanoparticle–substrate interaction and nanoparticle–polymer interaction, it is concluded that the effect of immobilization of nanoparticles on the substrate, together with entropy effect to minimize the energetically unfavorable chain stretching contributes to the most effective alignment between each layer.

  相似文献   


4.
Two-dimensional gold nanoparticle assemblies with an average nanoparticle size of 6 nm are generated on silicon and indium tin oxide (ITO)-coated glass surfaces, functionalized with polyethylenimine (PEI) silane monolayer. Contact angle measurements show increased hydrophilic character of the surface due to nanoparticle formation. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) are used to monitor the chemical and structural development of these nanostructures, while UV–vis spectroscopy is used to follow the formation of the nanoparticle assemblies. This paper elucidates a simple route to in situ synthesis of surface immobilized gold nanoparticles under ambient conditions and also extends to the synthesis of other surface bound nanoparticles, like silver and platinum. Gold nanoparticle assemblies generated in this study are also catalytically active towards methanol oxidation reaction (MOR), which is relevant for direct methanol fuel cells (DMFCs).  相似文献   

5.
Using 3‐Aminopropyltriethoxysilane(APTES) as a single silica source, an amino‐rich ultrafine organosilica‐nanoparticle‐modified Au electrode was fabricated, following the formation of (3‐mercaptopropyl)‐trimethoxysilane (MPTS) monolayer on Au surface (MPTS/Au). With cetyltrimethylammonium bromide as an additive, APTES‐based gel particles on the electrode have a narrow particle size distribution of 4–7 nm and “crystal‐like” structure. AFM and electrochemical characterization confirmed the successful grafting of APTES nanoparticles on MPTS/Au. The APTES/MPTS/Au electrode is highly sensitive for the detection of copper(II) ions with a detection limit as low as 1.6×10?12 mol L?1 (S/N>3) by square wave voltammetry. The current is linear to copper(II) concentration between 1.6×10?12 and 6.25×10?10 mol L?1.  相似文献   

6.
Immobilization of Ag and Au nanoparticles (NPs) synthesized by ascorbic acid on chemically modified glass surface has been studied. 3‐[2‐(2‐Aminoethylamino)ethylamino]propyl‐trimethoxysilane (AMPTS), N‐(2‐aminoethyl)‐3‐aminopropyltrimethoxysilan, and 3‐trimethoxysilyl‐1‐propanethiol (MSPT) were used as surface modifying agents. To improve immobilization efficiency, the ammonia solution has been used along with the silane reagents, which assisted to adsorb the metal NPs on glass surface. It was found that AMPTS and MSPT have considerable effect on deposition of Ag and AuNPs on glass substrate. The fabricated thin films were characterized by using UV‐Vis spectroscopy, atomic force microscopy, energy‐dispersive X‐ray spectroscopy and subjected to antimicrobial resistance test. The UV–Vis spectra show a distinctive plasmon resonance absorbance peak for thin films of Au and AgNPs prepared with MSPT and AMPTS, respectively. Atomic force microscopy images indicate that formation of Au and AgNPs with spherical morphology after immobilization on the glass substrate and also the dimensions of NPs on the surface appear larger than those observed in the parent colloidal solution. Energy‐dispersive X‐ray spectroscopy measurements confirmed the presence of silver and gold on the modified glass surface, and elemental composition was measured. The Au and AgNPs thin films show antibacterial activity against gram negative (Escherichia coli) and gram positive (Staphylococcus aureus) bacteria in comparison with a blank sample. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Nanocomposite films [Ag/(PAH‐PSS)nPAH]m were fabricated on a silicon substrate using a time‐ and cost‐efficient spin‐assisted layer‐by‐layer (SA‐LbL) self‐assembly technique. A virtually monolayer‐like layer of self‐assembled silver nanoparticles was formed when deposition time increased to 30 min. It was found that polymer multilayers could effectively decrease the resistivity of silver nanoparticle monolayer, which was far higher than that of bulk silver metal; however, the resistivity of Ag/(PAH‐PSS)nPAH multilayer films increased along with the increasing of the number of polymer bilayers. XPS investigations showed that silver nanoparticles were partially oxidized, which might be the major cause of the high resistivity of silver nanoparticle monolayer. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
A new silver‐functionalized silica‐based material with a core–shell structure based on silver nanoparticle‐coated silica spheres was synthesized, and silver nanoparticles were modified using strongly bound l‐ cysteine. l‐ Cysteine‐silver@silica was characterized by scanning electron microscopy and FTIR spectroscopy. Then, a solid‐phase extraction method based on l‐ cysteine‐silver@silica was developed and successfully used for bisphenol A determination prior to HPLC analysis. The results showed that the l‐ cysteine‐silver@silica as an adsorbent exhibited good enrichment capability for bisphenol A, and the maximum adsorption saturation was 20.93 mg/g. Moreover, a short adsorption equilibrium time was obtained due to the presence of silver nanoparticles on the surface of the silica. The extraction efficiencies were then optimized by varying the eluents and pH. Under the optimized conditions, good linearity for bisphenol A was obtained in the range from 0.4 to 4.0 μM (R2 > 0.99) with a low limit of detection (1.15 ng/mL). The spiked recoveries from tap water and milk samples were satisfactory (85–102%) with relative standard deviations below 5.2% (= 3), which indicated that the method was suitable for the analysis of bisphenol A in complex samples.  相似文献   

9.
Antimicrobial ultrafiltration membranes were prepared by coating silver nanoparticles on the surface of polyethersulfone (PES) membranes which were fabricated via phase inversion induced by the immersion precipitation technique, and their morphology and performance were compared with the antimicrobial PES membranes synthesized by adding the silver nanoparticles into the casting solution during the phase inversion process. For this purpose, stable and uniform colloidal solutions of the silver nanoparticles were prepared by chemical reduction of silver salt using fructose and dimethylformamide as a reducing agent. The silver nanoparticles were characterized by ultraviolet–visible spectroscopy, X‐ray powder diffraction and dynamic light scattering analysis. The morphology and surface properties of the prepared membranes were examined by field emission scanning electron microscopy and atomic force microscopy analysis. Moreover, the separation properties, antimicrobial efficiency and amount of silver release from the PES nanocomposite membranes during the cross flow ultrafiltration were determined. The results indicated that the silver content of the coated PES membranes was greater than the membranes fabricated by the solution blending method. Also, the permeation flux of the silver‐coated membranes was similar to the neat PES membranes, while the membranes prepared by the second approach had less flux. The membranes synthesized by both coating and blending methods showed high antimicrobial and bactericidal activity against gram‐negative bacteria such as Escherichia coli and gram‐positive bacteria such as Staphylococcus aureus. Finally, the prepared antimicrobial membranes were successfully used for the ultrafiltration of raw milk to reduce the microbial load during the concentration process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
We have demonstrated a novel way to form thickness‐controllable polyelectrolyte‐film/nanoparticle patterns by using a plasma etching technique to form, first, a patterned self‐assembled monolayer surface, followed by layer‐by‐layer assembly of polyelectrolyte‐films/nanoparticles. Octadecyltrimethoxysilane (ODS) and (3‐aminopropyl)triethoxysilane (APTES) self‐assembled monolayers (SAMs) were used for polyelectrolyte‐film and nanoparticle patterning, respectively. The resolution of the proposed patterning method can easily reach approximately 2.5 μm. The height of the groove structure was tunable from approximately 2.5 to 150 nm. The suspended lipid membrane across the grooves was fabricated by incubating the patterned polyelectrolyte groove arrays in solutions of 1,2‐dioleoyl‐sn‐glycero‐3‐phosphocholine (DOPC) giant unilamellar vesicles (GUVs). The method demonstrated here reveals a new path to create patterned 2D or 3D structures.  相似文献   

11.
Interactions between differently functionalised silver and gold nanoparticles (NPs) as well as polystyrene nanoparticles with bovine serum albumin (BSA) are studied using circular dichroism (CD) spectroscopy. It is found that the addition of NPs to the protein solution destroys part of the helical secondary structure of the protein as a result of surface adsorption. From the loss of free protein and hence the extent of their structural change adsorption equilibrium constants are derived. The results reveal that citrate‐coated gold and silver NPs exhibit much stronger interactions with BSA than polymeric or polymer‐coated metallic NPs. It is therefore concluded that for the particles considered, the influence of surface composition on the interaction behaviour dominates that of the core.  相似文献   

12.
Silver‐based nanocomposites are known to act as biocides against a series of microorganisms and are largely studied as an alternative to substitute conventional antibiotics that show decreasing efficacy. In this work, an eco‐friendly method to synthesize silver nanoparticles assembled on the surface of hexaniobate crystals is reported. By means of ion exchange, K+ ions of layered potassium hexaniobate were partially substituted by Ag+ ions and the resulting material was exposed to UV light. The irradiation allowed the reduction of silver ions with consequent formation of silver nanoparticles located only on the hexaniobate surface, whereas Ag+ ions located in the interlayer space remained in the ionic form. Increasing UV‐light exposure times allowed controlling of the silver nanoparticle size. The antibacterial effects of the pristine potassium hexaniobate and of silver‐containing hexaniobate samples were tested against Escherichia coli (E. coli). The antibacterial efficacy was determined to be related to the presence of silver in hexaniobate. An increasing activity against E. coli was observed with the decrease in silver nanoparticles size, suggesting that silver nanoparticles of distinct sizes interact differently with bacterial cell walls.  相似文献   

13.
We report herein a method for the ultra‐trace detection of TNT on p‐aminothiophenol‐functionalized silver nanoparticles coated on silver molybdate nanowires based on surface‐enhanced Raman scattering (SERS). The method relies on π‐donor–acceptor interactions between the π‐acceptor TNT and the π‐donor p,p′‐dimercaptoazobenzene (DMAB), with the latter serving to cross‐link the silver nanoparticles deposited on the silver molybdate nanowires. This system presents optimal imprint molecule contours, with the DMAB forming imprint molecule sites that constitute SERS “hot spots”. Anchoring of the TNT analyte at these sites leads to a pronounced intensification of its Raman emission. We demonstrate that TNT concentrations as low as 10?12 M can be accurately detected using the described SERS assay. Most impressively, acting as a new type of SERS substrate, the silver/silver molybdate nanowires complex can yield new silver nanoparticles during the detection process, which makes the Raman signals very stable. A detailed mechanism for the observed SERS intensity change is discussed. Our experiments show that TNT can be detected quickly and accurately with ultra‐high sensitivity, selectivity, reusability, and stability. The results reported herein may not only lead to many applications in SERS techniques, but might also form the basis of a new concept for a molecular imprinting strategy.  相似文献   

14.
胡玮  娄兆文 《化学研究》2013,(2):144-148
以3-氨丙基三乙氧基硅烷(APTES)作为氨基化试剂,通过硅烷化反应使其键合于Fe3O4纳米颗粒表面,制备了表面氨基化的磁性Fe3O4纳米复合颗粒;利用红外光谱分析了产物的化学键合特征,利用电位滴定测定了合成产物表面的-NH2含量,探讨了活化方式、反应溶剂、投料比、温度、时间等因素对氨基化修饰效果的影响.结果表明,APTES成功地包覆在磁性Fe3O4纳米微粒表面;在乙醇-水体系中,在Fe3O4与APTES投料比3∶8、温度60℃下反应12h,得到的Fe3O4纳米颗粒表面APTES修饰效果最佳,表面-NH2含量高达1 400±50μmol·g-1.  相似文献   

15.
Silver nanoparticles are of high importance due to their electrical, magnetic, and optical properties, as well as catalytic and biocidal activity that are superior to the bulk silver and other metals. To prepare certain devices, generally, silver is incorporated into a matrix either as preformed or in situ‐generated particles. Silver nanoparticles were generated in situ into a silicone matrix formed by cohydrolysis of the mixture of silanes, each of them having a certain role: dimethyldiethoxysilane (DMDES) as a precursor for highly flexible polydimethylsiloxane, methyltriethoxysilane (MTES) as a cross‐linker highly compatible with polydimethylsiloxane, and 3‐aminopropyltriethoxysilane as a stabilizer, since it can readily complex to silver atoms through its amine functionality. Dimethylformamide (DMF) was used as a solvent for the silver nitrate and reducing agent. The samples were investigated both in sol state and as aged coating films deposited on glass substrate. The complexation of the silver and the matrix formation were emphasized by FTIR. The size of the formed silicone particles encapsulating silver was estimated by dynamic light scattering (DLS) (about 100 nm) in sol and by AFM in film (about 90 nm). The formation of the clusters or nanoparticles depending on the ratio between the reducing and complexing agents was evidenced by UV–Vis absorption spectra. Thus, it would create conditions to stop and isolate clusters at the desired size by precise control of the experimental conditions. The composites could be used alone as antibacterial‐coating materials but also, porous silica having incorporated silver clusters with potential applicability in catalysis may result after their calcination. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Summary: Surface‐enhanced Raman scattering (SERS)‐active substrates with high enhancement were prepared by an in situ reduction method. Novel silver/poly(vinyl alcohol) (PVA) nanocomposite films were obtained, in which the silver nitrate, poly(γ‐glutamic acid) (PGA), and PVA acted as precursor, stabilizer, and polyol reducant, respectively. The UV‐visible spectra of the as‐fabricated films showed that the surface plasmon resonance (SPR) absorption band was narrow and of a stronger intensity, which indicates that the Ag nanoparticle size distribution on the substrate was highly uniform. This finding was further confirmed by X‐ray diffraction (XRD), transmission electron microscopy (TEM), and field‐emission scanning electron microscope (FE‐SEM) measurements. It was found that a PGA‐stabilized PVA nanocomposite film revealed the presence of well‐dispersed spherical silver nanoparticles with an average diameter of 90 nm. The new substrate presents high SERS enhancement and the enhanced factor is estimated to be 106 for the detection of benzoic acid.

The Raman scattering enhancement factor for the Raman spectra of benzoic acid on the various nanocomposite films.  相似文献   


17.
3 D highly ordered silver nanoparticles(AgNPs) coated silica photonic crystal beads(Ag/SPCBs) were prepared and exploited as a novel surface enhanced Raman scattering(SERS) substrate.The monodisperse and size-controlled SPCBs were prepared via self-assembly of silica nanoparticles process using a simple microfluidic device.Then the Ag/SPCBs were easily obtained by in situ growth of AgNPs onto the NH2-modified SPCBs.Field emitting scanning electron microscopy(SEM) and energy dispersive X-ray spectrometry(EDX) were used to characterize the Ag/SPCBs.The effect of silica nanoparticle size and AgNO3 concentration on the SERS performance of the resultant Ag/SPCBs substrate were discussed in detail.The results indicate that the Ag/SPCBs have highest SERS signals when silica nanoparticle size is250 nm and AgNO3 concentration is 0.8 mg/mL.Using malachite green(MG) as model analyte,the Ag/SPCBs substrate displayed a high sensitivity and a wide linear range for MG.The well-designed Ag/SPCBs show high uniformity and excellent reproducibility,and can be used as an effective SERS substrate for sensitive assay application.  相似文献   

18.
Polystyrene (PS) nanoparticles coated by BSA, hereafter denoted as PS/BSA, were prepared and chemically immobilized for the first time onto a capillary inner wall for open‐tubular CEC (OTCEC). EOF and scanning electron micrography were used to characterize the prepared nanoparticle‐coated capillaries. To investigate the performance of the prepared columns in OTCEC, chiral separation of d ,l ‐tryptophan (dl ‐Trp) was performed in monolayer BSA‐modified capillary and PS/BSA nanoparticle‐coated columns. The results indicated that the nanoparticle‐modified column afforded a higher resolution compared with the monolayer type. Rapid enantioseparation of dl ‐Trp (within 3 min) was achieved with the PS/BSA‐immobilized column using an electroosmotic pump‐assisted CEC. Enantiomer separations of other compounds like dl ‐tyrosine and warfarin were also achieved with the column. Besides, run‐to‐run and column‐to‐column repeatabilities of the PS/BSA‐coated column in the chiral separation were systematically introduced.  相似文献   

19.
《先进技术聚合物》2018,29(1):254-262
Membrane technology has been successfully applied for the removal of dyes from wastewater in the textile industry. A novel poly(vinylidene fluoride) (PVDF) membrane was prepared via blending with different dosages of Ag‐TiO2‐APTES composite for dyeing waste water treatment in our study. And the effect of Ag‐TiO2‐APTES blended into the PVDF membrane was discussed, including the rejection rate of methylene blue (MB) dye, membrane morphology, surface hydrophilicity, antibacterial activity, and a certain photocatalytic self‐cleaning performance. X‐ray diffraction and Fourier transform infrared characterization confirmed that Ag‐TiO2 was functionalized by amount of hydroxyl group (−OH) and amino group (NH−), which provided by APTES. Contact angle measurement certified that the hydrophilicity of the membrane surface increased, with the contact angle decrease to 61.4° compared with 81.8° of original PVDF membrane. MB rejection rate was also increased to 90.1% after addition of Ag‐TiO2‐APTES, and the rejection of original membrane was only 74.3%. The morphologies of membranes were observed by scanning electron microscope, which indicated that Ag‐TiO2‐APTES had a good dispersion in membrane matrix and also improved the microstructure of membranes. Besides, UV irradiation experiments were performed on the composite films contaminated by MB, and the result showed that Ag‐TiO2‐APTES nanoparticle provided PVDF membrane with a certain photodegradation capacity under UV irradiation. Moreover, antibacterial activity of the composite membrane was also demonstrated through antibacterial experiment, Escherichia coli as the representative bacteria. Perhaps, this research may provide a new way for PVDF blending modification.  相似文献   

20.
We report a simple and versatile approach to creating a highly transparent superhydrophobic surface with dual-scale roughness on the nanoscale. 3-Aminopropyltrimethoxysilane (APTS)-functionalized silica nanoparticles of two different sizes (100 and 20 nm) were sequentially dip coated onto different substrates, followed by thermal annealing. After hydrophobilization of the nanoparticle film with (heptadecafluoro-1,1,2,2-tetrahydrodecyl)trichlorosilane for 30 min or longer, the surface became superhydrophobic with an advancing water contact angle of greater than 160° and a water droplet (10 μL) roll-off angle of less than 5°. The order of nanoparticles dip coated onto the silicon wafer (i.e., 100 nm first and 20 nm second or vice versa) did not seem to have a significant effect on the resulting apparent water contact angle. In contrast, when the substrate was dip coated with monoscale nanoparticles (20, 50, and 100 nm), a highly hydrophobic surface (with an advancing water contact angle of up to 143°) was obtained, and the degree of hydrophobicity was found to be dependent on the particle size and concentration of the dip-coating solution. UV-vis spectra showed nearly 100% transmission in the visible region from the glass coated with dual-scale nanoparticles, similar to the bare one. The coating strategy was versatile, and superhydrophobicity was obtained on various substrates, including Si, glass, epoxy resin, and fabrics. Thermal annealing enhanced the stability of the nanoparticle coating, and superhydrophobicity was maintained against prolonged exposure to UV light under ambient conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号