首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystallization behavior of a new sequential polyester constituted by glycolic acid and 4‐hydroxybutyric acid has been studied under nonisothermal conditions. Nonisothermal melt crystallization has been followed by means of hot‐stage optical microscopy (HSOM), with experiments performed at different cooling rates. Two crystallization regimes have been found, which is in good agreement with previous isothermal studies and with the different spherulitic morphologies that were observed. The kinetics of both glass and melt crystallizations has also been studied by differential scanning calorimetry (DSC) and considering the typical Avrami, Ozawa, and Cazé analyses. Only the last gave Avrami exponents, which were in good agreement with those measured under isothermal conditions, suggesting a spherulitic growth with a predetermined nucleation. Isoconversional data of melt and glass nonisothermal crystallizations have been combined to obtain the Hoffman and Lauritzen parameters. Results again indicate the existence of two crystallization regimes with nucleation constants close to those deduced from isothermal DSC experiments. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 121–133, 2008  相似文献   

2.
The main attitude of new wound dressings with biocompatible natural or synthetic polymers is improving and accelerating the healing process. In this study, halloysite nanotubes (HNTs) loaded with a model antibiotic drug, amoxicillin (AMX), were incorporated within poly(lactic‐co‐glycolic acid) (PLGA) solution that were electrospun with hydrophilic chitosan nanofibers simultaneously in two different syringes to make composite nanofibrous mat. The morphology, homogeneity, and fiber diameter of electrospun (PLGA/HNTs/AMX/chitosan) composite nanofibers were investigated by scanning electron microscopy and image J software. To evaluate the chemical structure, mechanical property, contact angle, and water absorption of samples, Fourier transform infrared spectroscopy, tensile testing, water contact angle, and immersion in phosphate buffer saline were utilized, respectively. Results indicated that incorporation of HNTs does not significantly alter nanofibers' morphology but rather increases their diameter, while the mechanical properties are improved because of its high modulus. Also, addition of natural hydrophilic polymer nanofibers (chitosan) enhanced the hydrophilicity property of samples. According to high‐performance liquid chromatography drug release analysis, HNTs as a good nanocarrier decreased initial burst release and showed controlled release behavior. MTT assay determined biocompatibility of PLGA/HNTs/AMX/chitosan. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
A novel PLA-based polymer containing reactive pendent ketone or hydroxyl groups was synthesized by the copolymerization of L-lactide with epsilon-caprolactone-based monomers. The polymer was activated with NPC, resulting in an amine-reactive polymer which was then cast into thin polymeric films, either alone or as part of a blend with PLGA, before immersion into a solution of the cell adhesion peptide GRGDS in PBS buffer allowed for conjugation of GRGDS to the film surfaces. Subsequent 3T3 fibroblast cell adhesion studies demonstrated an increase in cellular adhesion and spreading over films cast from unmodified PLGA. Hence the new polymer can be used to obtain covalent linkage of amine-containing molecules to polymer surfaces.  相似文献   

4.
A pentamethylcyclotrisiloxane moiety was introduced into cyclic polystyrene (cPSt) and cyclic PDMS (cPDMS) to obtain noncovalent cross‐linking agents, D3cPSt and D3cPDMS, respectively. Anionic ring‐opening polymerization of octamethylcyclotetrasiloxane (D4) in nitrobenzene was carried out in the presence of D3cPSt to obtain a cloudy white PDMS gel as a precipitation. On the other hand, bulk copolymerization of D3cPDMS with D4 proceeded in a homogeneous state to give a colorless transparent PDMS gel in high yield. The formation of mechanically linked PDMS with movable cross‐linking was indicated by control experiment. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5882–5890, 2009  相似文献   

5.
Isothermal crystallization behavior of a new regular polyester constituted by glycolic acid and 4‐hydroxybutyric acid units is studied by means of differential scanning calorimetry and hot‐stage optical microscopy. A wide range of crystallization conditions were experimentally accessible, allowing various morphological features to be observed and accurate estimates made of characteristic growth parameters, including radial growth and nucleation rates. Three‐dimensional spherulitic growth from heterogeneous nuclei is deduced from the Avrami analysis, whereas optical micrographs reveal two different spherulitic textures that agree with the existence of two crystallization regimes. These can be well distinguished from the breaks observed in the Lauritzen and Hoffman plots when the linear crystal growth rate or the overall crystallization rate is considered. Ringed and nonringed spherulites with negative and positive birefringence, respectively, can be obtained depending on crystallization conditions and regimes. The studied polyester shows rather complex melting behavior which is interpreted in terms of a recrystallization process involving the two different kinds of spherulites. This study allows polymorphism to be discounted. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2640–2653, 2007  相似文献   

6.
A biodegradable scaffold with tissue ingrowth and load‐bearing capabilities is required to accelerate the healing of bone defects. However, it is difficult to maintain the mechanical properties as well as biodegradability and porosity (necessary for bone ingrowth) at the same time. Therefore, in the present study, polycaprolactone (PCL) and poly (lactic‐co‐glycolic acid) (PLGA5050) were mixed in varying ratio and incorporated with 20 wt.% beta tri‐calcium phosphate (βTCP). The mixture was shaped under pressure into originally nonporous cylindrical constructs. It is envisioned that the fabricated constructs will develop porosity with the time‐dependent biodegradation of the polymer blend. The mechanical properties will be sustained since the decrease in mechanical properties associated with the dissolution of the PLGA, and the formation of the porous structure will be compensated with the new bone formation and ingrowth. To prove the hypothesis, we have systematically studied the effects of samples composition on the time‐dependent dissolution behavior, pore formation, and mechanical properties of the engineered samples, in vitro. The highest initial (of as‐prepared samples) values of the yield strength (0.021 ± 0.002 GPa) and the Young's modulus (0.829 ± 0.096 GPa) were exhibited by the samples containing 75 wt.% of PLGA. Increase of the PLGA concentration from 25 to 75 wt.% increased the rate of biodegradation by a factor of 3 upon 2 weeks in phosphate buffered saline (1 × PBS). The overall porosity and the pore sizes increased with the dissolution time indicating that the formation of in situ pores can indeed enable the migration of cells followed by vascularization and bone growth.  相似文献   

7.
A set of well‐defined poly(ethylene‐alt‐propylene)‐b‐polylactide (PEP‐PLA) diblock copolymers containing volume fractions of PLA (fPLA) ranging between 0.08 and 0.91 were synthesized by a combination of living anionic polymerization, catalytic hydrogenation, and controlled coordination‐insertion ring‐opening polymerization. The morphological behavior of these relatively low‐molecular‐weight PEP‐PLA diblock copolymers was investigated with a combination of rheology, small‐angle X‐ray scattering, and differential scanning calorimetry. The ordered microstructures observed were lamellae (L), hexagonally packed cylinders (C), spheres (S), and gyroid (G), a bicontinous cubic morphology having Ia3 d space group symmetry. The G morphology existed in only a small region between the L‐C morphologies in close proximity to the order–disorder transition (ODT). Transformations from L to G were observed upon heating in several samples. The efficacy of the reverse G to L transition in one sample was cooling rate dependent. The PEP‐PLA Flory–Huggins interaction parameter as a function of temperature χPEP‐PLA(T) was estimated from TODT's by mean‐field theory and subsequently used in the construction of the experimental PEP‐PLA morphology diagram (χN versus fPLA). The resultant morphology diagram was symmetric there were the well‐defined L‐C morphology boundaries. The low molecular weight of the materials imparted no significant deviation from previously documented diblock systems. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2364–2376, 2002  相似文献   

8.
The synthesis of macromonomers of acrylic acid was performed by telomerization in a three‐step process. The first step was the telomerization of tert‐butyl acrylate in the presence of thioglycolic acid. Different molecular weights were obtained with different ratios of the monomer to the transfer agent. Good control of the molecular weights and architectures of the oligomers (e.g., the presence of an acid function on the chain end) was observed. The transfer constant of tert‐butyl acrylate with thioglycolic acid was assessed (chain‐transfer constant = 0.6). In the second step, the terminal unsaturation of the oligomers was obtained by the reaction of the terminal acid groups with 2‐isocyanatoethyl methacrylate to yield the macromonomers of tert‐butyl acrylate. In the last step, the tert‐butyl acrylate groups were hydrolyzed in the presence of trifluoroacetic acid at room temperature. The macromonomers were copolymerized with styrene to obtain graft copolymers, and the reactivity ratios were evaluated. Finally, the copolymers were characterized with surface electron microscopy and atom force microscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 395–415, 2007  相似文献   

9.
The growth and degradation of poly(glycolic acid) (PGA) and poly(ε‐caprolactone) (PCL) brushes were compared. Using tin (octanoate) as the catalyst, optimal conditions were found for growth of each polyester brush from the hydroxy‐terminated silicon surface via ring‐opening polymerization. PCL brushes grew thicker at elevated temperatures but the thickest PGA brushes grew at room temperature. Unlike bulk polyesters that can degrade under both acidic and basic conditions, the confined surface polyester brushes only degraded under neutral or basic conditions. The degradation mechanism of grafted polyester brushes was probed through a blocking test. It was shown that the terminal hydroxy groups of these polyester brushes were essential to the degradation process indicating a preferential backbiting mechanism. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4643–4649  相似文献   

10.
Two types of three‐arm and four‐arm, star‐shaped poly(D,L ‐lactic acid‐alt‐glycolic acid)‐b‐poly(L ‐lactic acid) (D,L ‐PLGA50‐b‐PLLA) were successfully synthesized via the sequential ring‐opening polymerization of D,L ‐3‐methylglycolide (MG) and L ‐lactide (L ‐LA) with a multifunctional initiator, such as trimethylolpropane and pentaerythritol, and stannous octoate (SnOct2) as a catalyst. Star‐shaped, hydroxy‐terminated poly(D,L ‐lactic acid‐alt‐glycolic acid) (D,L ‐PLGA50) obtained from the polymerization of MG was used as a macroinitiator to initiate the block polymerization of L ‐LA with the SnOct2 catalyst in bulk at 130 °C. For the polymerization of L ‐LA with the three‐arm, star‐shaped D,L ‐PLGA50 macroinitiator (number‐average molecular weight = 6800) and the SnOct2 catalyst, the molecular weight of the resulting D,L ‐PLGA50‐b‐PLLA polymer linearly increased from 12,600 to 27,400 with the increasing molar ratio (1:1 to 3:1) of L ‐LA to MG, and the molecular weight distribution was rather narrow (weight‐average molecular weight/number‐average molecular weight = 1.09–1.15). The 1H NMR spectrum of the D,L ‐PLGA50‐b‐PLLA block copolymer showed that the molecular weight and unit composition of the block copolymer were controlled by the molar ratio of L ‐LA to the macroinitiator. The 13C NMR spectrum of the block copolymer clearly showed its diblock structures, that is, D,L ‐PLGA50 as the first block and poly(L ‐lactic acid) as the second block. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 409–415, 2002  相似文献   

11.
D ,L ‐3‐Methylglycolide (MG) was synthesized via two step reactions with a good yield (42%). It was successfully polymerized in bulk with stannous octoate as a catalyst at 110 °C. The effects of the polymerization time and catalyst concentration on the molecular weight and monomer conversion were studied. Poly(D ,L ‐lactic acid‐co‐glycolic acid) (D ,L ‐PLGA50; 50/50 mol/mol) copolymers were successfully synthesized from the homopolymerization of MG with high polymerization rates and high monomer conversions under moderate polymerization conditions. 1H NMR spectroscopy indicated that the bulk ring‐opening polymerization of MG conformed to the coordination–insertion mechanism. 13C NMR spectra of D ,L ‐PLGA50 copolymers obtained under different experimental conditions revealed that the copolymers had alternating structures of lactyl and glycolyl. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4179–4184, 2000  相似文献   

12.
Poly(ε‐caprolactone) (PCL) and poly(lactic acid) (PLA) networks were prepared from macromonomer diols functionalized with methacrylic anhydride, which allows one to get self‐crosslinkable polymers. Besides, both macromonomers were copolymerized to get copolymer networks with different compositions (namely, PCL/PLA: 0/100, 70/30, 50/50, 30/70, 100/0). Dielectric and calorimetric experiments allow one to conclude the microphase separation of the system: one phase made of pure PCL domains while the second one consists of caprolactone units, which somehow plasticize PLA and moves its main relaxation (glass transition) to lower temperatures. The effect of crosslinking PLA on the dynamics of the system was further investigated by comparing with the dynamics for linear PLA. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 183–193, 2009  相似文献   

13.
Random copolyesters based on 1,4‐butanediol and different ratios between adipic and terephthalic units were synthesized from thermal polycondensation of the appropriate mixture of monomers or by melt transesterification of the mixture of homopolymers. 1H NMR spectroscopy makes feasible the study of the average block lengths of polymers once synthesized and after degradation in different media. Calorimetric data are reported, including those referred to the study of isothermal and nonisothermal crystallizations. Degradability of samples was evaluated by different methods including NMR and thermal analysis, evaluation of molecular weight by gel permeation chromatography or from intrinsic viscosity measures, scanning electron micrographs, and changes in mechanical properties. Distilled water at 70 °C acidic conditions provided by a pH 2.3 aqueous medium and enzymatic media containing lipases from Pseudomonas cepacia or Candida cylindracea were considered in this study. The degradability of the studied copolyesters strongly depends on the terephthalate content and the degradation media. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4141–4157, 2002  相似文献   

14.
This study is to prepare a nanosuspension based on poly(lactic‐co‐glycolic acid) (PLGA) for delivery, controlled release and enhanced anti‐solid tumor effects of As2O3. As2O3‐loaded PLGA nanocapsules (As2O3‐PLGA NCs) were prepared by double emulsion‐solvent evaporation method and were optimized by univariate analysis in combination with orthogonal experimental according to several factors. The optimized As2O3‐PLGA NCs presented suitable physical stability, favorable size of (200.2±10.6) nm (PDI=0.117±0.008), spherical shape, and high encapsulation efficiency (92.48%±2.14%). The in vitro suspension stability of the NCs was excellent. The release of As2O3 from the NCs showed pH responsive release characteristics. The NCs can be efficiently taken up by SMMC‐7721 cell and showed excellent antitumor efficacy against SMMC‐7721 cell line. Then, As2O3‐PLGA NCs could be considered as a promising formulation for the pH dependent release of As2O3 in cancer cells and enhance the anti‐solid tumor effects of As2O3.  相似文献   

15.
Poly(glycolic acid) (PGA) and a series of novel random copolymers of PGA containing 2‐hydroxyisobutyrric acid (PGAPHIB) (HIB unit content from 1.5 to 7.4 mol %) were synthesized and characterized in terms of chemical structure and molecular weight. Afterward, the polyesters were examined by thermogravimetric analysis, differential scanning calorimetry, and X‐ray diffraction techniques. The copolymers, which displayed a better thermal stability than PGA, at room temperature appeared as semicrystalline materials: the main effect of copolymerization was a lowering in the amount of crystallinity and a decrease of the melting temperature with respect to homopolymer PGA. Baur's equation described well the Tm‐composition data. X‐ray diffraction measurements allowed the identification of the PGA crystalline structure in all cases. After melt quenching, semicrystalline samples were obtained with the exception of PGAPHIB7.4 copolymer. The introduction of HIB units decreased the crystallization rate compared with pure PGA. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1901–1910, 2010  相似文献   

16.
Tissue engineering scaffolds require a controlled pore size and structure to host tissue formation from cell populations. Supercritical carbon dioxide (scCO2) processing can be used to form porous scaffolds in which the escape of CO2 from a plasticized polymer melt generates gas bubbles that shape the pores. The process is difficult to control with respect to changes in final pore size, porosity, and interconnectivity, while the solubility of CO2 in the polymers strongly affects the foaming process. An in‐depth understanding of polymer CO2 interaction will enable a successful scaffold processing. Amorphous poly(DL ‐lactic acid) (PDL LA) and poly(lactic acid‐co‐glycolic acid) (PLGA) polymers are attractive candidates for fabricating scaffolds. In this study, CO2 sorption and swelling isotherms at 35 °C and up to 200 bar on a variety of homo‐ and copolymers of lactic acid and glycolic acids are presented. Sorption is measured through a gravimetric technique using a suspension microbalance and swelling by visualization. The obtained results are modeled using the Sanchez‐Lacombe equation of state. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 483–496, 2008  相似文献   

17.
18.
19.
Repeating sequence copolymers of poly(lactic‐co‐caprolactic acid) (PLCA), poly(glycolic‐co‐caprolactic acid) (PGCA), and poly(lactic‐co‐glycolic‐co‐caprolactic acid) (PLGCA) have been synthesized by polymerizing segmers with a known sequence in yields of 50–85% with Mns ranging from 18–49 kDa. The copolymers exhibited well‐resolved NMR resonances indicating that the sequence encoded in the segmers used in their preparation is retained and that transesterification is minimal. The exact sequences allowed for unambiguous assignment of the NMR spectra, and these standards were compared with the data previously reported for random copolymers. The glass transition temperatures (Tgs) of the PLCA and PGCA copolymers were found to depend primarily on monomer ratio rather than sequence. Sequence dependent Tgs were, however, noted for the PLGCA polymers with 1:1:1 L:G:C ratios; poly LGC and poly GLC exhibited Tgs that differed by nearly 8 °C. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
Poly(sulfone‐arylate) was synthesized in a reaction between dihydroxy polysulfone prepolymers and either diphenyl terephthalate or terephthaloyl chloride. The dihydroxy polysulfone prepolymers had molecular weights of 2000 and 4000 g/mol. The polymerization with diphenyl terephthalate was carried out at high temperature (280 °C) in the presence of a catalyst, whereas the polymerization with terephthalic chloride was conducted in solution at low temperature in the presence of an acid acceptor. High‐molecular weight copolymers (ηinh ~ 0.60 dL/g) could be obtained through both methods. The copolymers were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance, DMA, and differential scanning calorimetry measurements and were found to exhibit high Tg values. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3904–3913, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号