首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complex thermal behavior of poly(l ‐lactic acid) films crystallized from the melt, either isothermally or nonisothermally, was studied by differential scanning calorimetry (DSC), wide angle X‐ray diffraction, and small angle X‐ray scattering. The variation of the thermal behavior with crystallization temperature, time, and cooling rate was documented and analyzed. After nonisothermal crystallization at low cooling rates that develop high crystallinity, an obvious double melting peak appears at modest heating rates (e.g., 10 °C/min). At higher heating rates, these samples exhibit only single melting. However, an unusual form of double melting occurs under the majority of the conditions studied under either isothermal or nonisothermal conditions. In this case, double melting is marked by the appearance of a recrystallization exotherm just prior to the final melting that obscures the observation of the melting of the crystals formed during the initial crystallization process. The occurrence of double melting in melt‐crystallized samples was concluded to be the result of a melt‐recrystallization process occurring during the subsequent DSC heating scan; it is a function of crystalline perfection, not the initial crystallinity, nor whether or not the crystallization reached completion at the crystallization temperature. Many other very interesting observations are also discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3378–3391, 2006  相似文献   

2.
The melting behavior of poly(L ‐lactic acid) film crystallized from the glassy state, either isothermally or nonisothermally, was studied by wide angle X‐ray diffraction (WAXD), small angle X‐ray scattering (SAXS), differential scanning calorimetry (DSC), and temperature‐modulated differential scanning calorimetry (TMDSC). Up to three crystallization and two melting peaks were observed. It was concluded that these effects could largely be accounted for on the basis of a “melt‐recrystallization” mechanism. When molecular weight is low, two melting endotherms are readily observed. But, without TMDSC, the double melting phenomena of high molecular weight PLLA is often masked by an exotherm just prior to the final melting, as metastable crystals undergo melt‐recrystallization during heating in the DSC. The appearance of a double cold‐crystallization peak during the DSC heating scan of amorphous PLLA film is the net effect of cold crystallization and melt‐recrystallization of metastable crystals formed during the initial cold crystallization. Samples cold‐crystallized at 80 and 90 °C did not exhibit a long period, although substantial crystallinity developed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3200–3214, 2006  相似文献   

3.
After isothermal crystallization, poly(ethylene terephthalate) (PET) showed double endothermic behavior in the differential scanning calorimetry (DSC) heating scan. During the heating scans of semicrystalline PET, a metastable melt which comes from melting thinner lamellar crystal populations formed between the low and the upper endothermic temperatures. The metastable melt can recrystallize immediately just above the low melting temperature and form thicker lamellae than the original ones. The thickness and perfection depends on the crystallization time and crystallization temperature. The crystallization kinetics of this metastable melt can be determined by means of DSC. The kinetics analysis showed that the isothermal crystallization of the metastable PET melt proceeds with an Avrami exponent of n = 1.0 ∼ 1.2, probably reflecting one‐dimensional or irregular line growth of the crystal occurring between the existing main lamellae with heterogeneous nucleation. This is in agreement with the hypothesis that the melting peaks are associated with two distinct crystal populations with different thicknesses. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 53–60, 2000  相似文献   

4.
The role of organically modified silicate (OMS), Lucentite STN on the formation of β‐crystalline phase of poly(vinylidene fluoride) (PVDF) is investigated in the present study. The OMS was solution blended with PVDF and cast on glass slide to form PVDF‐OMS nanocomposites. Solution cast samples were subjected to various thermal treatments including annealing (AC‐AN), melt‐quenching followed by annealing (MQ‐AN), and melt‐slow cooling (MSC). Fourier‐transform infrared spectroscopy (FT‐IR), wide angle X‐ray diffraction (WAXD), and differential scanning calorimetry (DSC) were used to investigate the crystalline structure of thermally treated samples. As a special effort, the combination of in situ thermal FT‐IR, WAXD, and DSC studies was utilized to clearly assess the thermal properties. FT‐IR and WAXD results of MQ‐AN samples revealed the presence of β‐phase of PVDF. Ion‐dipole interaction between the exfoliated clay nanolayers and PVDF was considered as a main factor for the formation of β‐phase. Melt‐crystallization temperature and subsequent melting point were enhanced by the addition of OMS. Solid β‐ to γ‐crystal phase transition was observed from in situ FT‐IR and WAXD curves when the representative MQ‐AN sample was subjected to thermal scanning. Upon heating, β‐phase was found to disappear through transformation to the thermodynamically stable γ‐phase rather than melting directly. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2173–2187, 2008  相似文献   

5.
The melting behavior of poly(butylene succinate‐co‐adipate) (PBSA) isothermally crystallized from the melt was investigated by differential scanning calorimetry. Triple, double, or single melting endotherms were observed in subsequent heating scan for the samples isothermally crystallized at different temperatures. These endothermic peaks were labeled as I, II, and III for low‐, middle‐, and high‐temperature melting endotherms, respectively. The independence of endotherm III to the crystallization temperature, the existence of an exothermic crystallization peak just below the endotherm III, and the heating rate dependence of endotherm III indicated that endotherm III was due to the remelting of recrystallized lamellar during a heating scan. The influence of crystallization time on the melting behavior of PBSA showed that endotherms II and III developed prior to endotherm I; endotherm III developed rather simultaneously with endotherm II. Further investigation showed that the peak temperature of endotherm I increased linearly with the logarithm of the crystallization time. It suggested that endotherm II was attributed to the melting of the primary lamellae, while endotherm I was due to the melting of secondary lamellae. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3077–3082, 2005  相似文献   

6.
A semicrystalline ethylene‐hexene copolymer (PEH) was subjected to a simple thermal treatment procedure as follows: the sample was isothermally crystallized at a certain isothermal crystallization temperature from melt, and then was quenched in liquid nitrogen. Quintuple melting peaks could be observed in heating scan of the sample by using differential scanning calorimeter (DSC). Particularly, an intriguing endothermic peak (termed as Peak 0) was found to locate at about 45 °C. The multiple melting behaviors for this semicrystalline ethylene‐hexene copolymer were investigated in details by using DSC. Wide‐angle X‐ray diffraction (WAXD) technique was applied to examine the crystal forms to provide complementary information for interpreting the multiple melting behaviors. Convincing results indicated that Peak 0 was due to the melting of crystals formed at room temperature from the much highly branched ethylene sequences. Direct heating scans from isothermal crystallization temperature (Tc, 104–118 °C) were examined for comparison, which indicated that the multiple melting behaviors depended on isothermal crystallization temperature and time. A triple melting behavior could be observed after a relatively short isothermal crystallization time at a low Tc (104–112 °C), which could be attributed to a combination of melting of two coexistent lamellar stack populations with different lamellar thicknesses and the melting‐recrystallization‐remelting (mrr) event. A dual melting behavior could be observed for isothermal crystallization with both a long enough time at a low Tc and a short or long time at an intermediate Tc (114 °C), which was ascribed to two different crystal populations. At a high Tc (116–118 °C), crystallizable ethylene sequences were so few that only one single broad melting peak could be observed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2100–2115, 2008  相似文献   

7.
The influence of thermal history on morphology, melting, and crystallization behavior of bacterial poly(3‐hydroxybutyrate) (PHB) has been investigated using temperature‐modulated DSC (TMDSC), wide‐angle X‐ray diffraction (WAXRD) and polarized optical microscopy (POM). Various thermal histories were imparted by crystallization with continuous and different modulated cooling programs that involved isoscan and cool–heat segments. The subsequent melting behavior revealed that PHB experienced secondary crystallization during heating and the extent of secondary crystallization varied with the cooling treatment. PHB crystallized under slow, continuous, and moderate cooling rates were found to exhibit double melting behavior due to melting of TMDSC scan‐induced secondary crystals. PHB underwent considerable secondary crystallization/annealing that took place under modulated cooling conditions. The overall melting behavior was interpreted in terms of recrystallization and/or annealing of crystals. Interestingly, the PHB analyzed by temperature modulation programs showed a broad exotherm before the melting peak in the nonreversing heat capacity curve and a multiple melting reversing curve, verifying that the melting–recrystallization and remelting process was operative. WAXRD and POM studies supported the correlations from DSC and TMDSC results. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 70–78, 2006  相似文献   

8.
In this work, multiwalled carbon nanotubes (MWNTs) were surface‐modified and grafted with poly(L ‐lactide) to obtain poly(L ‐lactide)‐grafted MWNTs (i.e. MWNTs‐g‐PLLA). Films of the PLLA/MWNTs‐g‐PLLA nanocomposites were then prepared by a solution casting method to investigate the effects of the MWNTs‐g‐PLLA on nonisothermal and isothermal melt‐crystallizations of the PLLA matrix using DSC and TMDSC. DSC data found that MWNTs significantly enhanced the nonisothermal melt‐crystallization from the melt and the cold‐crystallization rates of PLLA on the subsequent heating. Temperature‐modulated differential scanning calorimetry (TMDSC) analysis on the quenched PLLA nanocomposites found that, in addition to an exothermic cold‐crystallization peak in the range of 80–120 °C, an exothermic peak in the range of 150–165 °C, attributed to recrystallization, appeared before the main melting peak in the total and nonreversing heat flow curves. The presence of the recrystallization peak signified the ongoing process of crystal perfection and, if any, the formation of secondary crystals during the heating scan. Double melting endotherms appeared for the isothermally melt‐crystallized PLLA samples at 110 °C. TMDSC analysis found that the double lamellar thickness model, other than the melting‐recrystallization model, was responsible for the double melting peaks in PLLA nanocomposites. Polarized optical microscopy images found that the nucleation rate of PLLA was enhanced by MWNTs. TMDSC analysis found that the incorporation of MWNTs caused PLLA to decrease the heat‐capacity increase (namely, ΔCp) and the Cp at glass transition temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1870–1881, 2007  相似文献   

9.
We prepared blends of poly(butylene‐2,6‐naphthalate) (PBN) and poly(ether imide) (PEI) by solution‐casting from dichloroacetic acid solutions. The miscibility, crystallization, and melting behavior of the blends were investigated with differential scanning calorimetry (DSC) and dynamic mechanical analysis. PBN was miscible with PEI over the entire range of compositions, as shown by the existence of single composition‐dependent glass‐transition temperatures. In addition, a negative polymer–polymer interaction parameter was calculated, with the Nishi–Wang equation, based on the melting depression of PBN. In nonisothermal crystallization investigations, the depression of the crystallization temperature of PBN depended on the composition of the blend and the cooling rate; the presence of PEI reduced the number of PBN segments migrating to the crystallite/melt interface. Melting, recrystallization, and remelting processes occurring during the DSC heating scan caused the occurrence of multiple melting endotherms for PBN. We explored the effects of various experimental conditions on the melting behavior of PBN/PEI blends. The extent of recrystallization of the PBN component during DSC heating scans decreased as the PEI content, the heating rate, the crystallization temperature, and the crystallization time increased. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1694–1704, 2004  相似文献   

10.
Segmented poly(ether‐block‐amide) copolymers are typically known as polyamide‐based thermoplastic elastomers consisting of hard, crystallizable polyamide block and flexible, amorphous polyether block. The melting characteristics of a poly(ether‐block‐amide) copolymer melt‐crystallized under various quiescent, isothermal conditions were calorimetrically investigated using differential scanning calorimetry (DSC). For such crystallized copolymer samples, their crystalline structures under ambient condition and the structural evolutions upon heating from ambient to complete melting were characterized using ambient and variable‐temperature wide‐angle X‐ray diffractometry (WAXD), respectively. It was observed that dependent of specific crystallization conditions, the copolymer samples exhibited one, two, or three melting endotherms. The ambient WAXD results indicated that all melt‐crystallized copolymer samples only exhibited γ‐form crystals associated with the hexagonal habits of the polyamide homopolymer, whereas variable‐temperature WAXD data suggested that upon heating from ambient, a melt‐crystallized copolymer might exhibit so‐called Brill transition before complete melting. Based on various DSC and variable‐temperature WAXD experimental results obtained in this study, the applicability of different melting mechanisms that might be responsible for multiple melting characteristics of various crystallized PEBA copolymer samples were discussed. It was postulated that the low (T m1) endotherm was primarily because of the disruption of less thermally stable, short‐range ordered structure of amorphous polyamide segments of the copolymer, which was only formed after the completion of primary crystallization via so‐called annealing effects. The intermediate (Tm2) and high (Tm3) endotherms were attributed to the melting of primary crystals within polyamide crystalline microdomains of the copolymer. The appearance of these two melting endotherms might be somehow complicated by thermally induced Brill transition. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2035–2046, 2008  相似文献   

11.
Melt, cold isothermal crystallization kinetics, and multiple melting phenomena are investigated by differential scanning calorimetry (DSC) for a flame‐retardant phosphorus containing copolyester. The crystallization kinetics was investigated by the Avrami equation. The Avrami exponent is about 2.6 for melt crystallization and about 2 for cold crystallization. The crystallization activation energy for melt crystallization and for cold crystallization is −64.7 and 145.5, respectively. Three melting endotherms are found in the DSC scan, and they are explained in terms of secondary crystallization, primary crystallization, and recrystallization during the scan. A strong evidence of a two‐stage crystallization mechanism was also observed in the DSC isothermal experiment and X‐ray diffraction. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2269–2277, 1999  相似文献   

12.
Nonisothermal crystallization and melting behavior of poly(β‐hydroxybutyrate) (PHB)–poly(vinyl acetate) (PVAc) blends from the melt were investigated by differential scanning calorimetry using various cooling rates. The results show that crystallization of PHB from the melt in the PHB–PVAc blends depends greatly upon cooling rates and blend compositions. For a given composition, the crystallization process begins at higher temperatures when slower scanning rates are used. At a given cooling rate, the presence of PVAc reduces the overall PHB crystallization rate. The Avrami analysis modified by Jeziorny and a new method were used to describe the nonisothermal crystallization process of PHB–PVAc blends very well. The double‐melting phenomenon is found to be caused by crystallization during heating in DSC. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 443–450, 1999  相似文献   

13.
The multiple melting behavior of poly(1,3-propylene terephthalate) (PPT) samples after isothermal crystallization from the melt was studied. The step-scan temperature-modulated differential scanning calorimetry (TMDSC) and high rate DSC were used to investigate this behavior in conjunction with standard DSC, wide-angle X-ray diffraction (WAXD) and polarizing light microscopy (PLM). The effect of PPT average molecular weight on the melting was also examined. In general multiple endotherms after isothermal crystallization of PPT were attributed to a continuous crystal perfection process during the subsequent heating scan via melting-recrystallization-remelting. Multiple melting behavior was more pronounced for the low molecular weight PPT. Step-scan TMDSC showed that extensive recrystallization occurs in PPT samples, especially after rapid isothermal crystallization. In fact two recrystallization exothermic peaks were observed. High rate DSC revealed the initial morphology generated during the isothermal step and showed that the low and middle peaks are associated with melting of primary crystals while the high temperature peak should be attributed to melting of recrystallized material.  相似文献   

14.
Poly(L ‐lactide) (PLLA) on poly(2‐hydroxyethyl methacrylate) (PHEMA) backbone was prepared by a combination of atom transfer radical polymerization (ATRP) and ring‐opening polymerization (ROP). The structure of the comb polymer was analyzed by wide angle X‐ray diffraction (WAXD), small angle X‐ray scattering (SAXS), and differential scanning calorimetry (DSC). WAXD result indicates that the comb polymer has α crystalline modification with a 103 helical conformation. Lamellar parameters of the crystalline structure were obtained by one‐dimension correlation function (1DCF) calculated from SAXS results. The calculations show that the thickness of crystalline layer is controlled by annealing temperature and comb structure. DSC was applied to study kinetics of the crystallization and melting behavior. Two melting peaks on melting curves of the comb polymer at different crystallization temperature were detected, and the peak at higher temperature is attributed to the melt‐recrystallization. The equilibrium melting temperature is found to be influenced by the comb structure. In this article the effects of the comb structure on Avrami exponent, equilibrium melting point and melting peak of the comb polymer were discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 589–598, 2008  相似文献   

15.
Multiple melting behaviors have been studied extensively. Syndiotactic polyStyrene(SPS), in 6 crystalline form exhibited such phenomena. It was suggested that arecrystallization process occurred since it has been clarified that no other modificationswere observed during the DSC heating scanl. In this study, a series of SPS samples in 0form were prepared by cooling from the melt at various cooling ratesl and the factors thatinfluence the multiple melting behavior of SPS in 0 form were exam…  相似文献   

16.
Copolyester was synthesized and characterized as having 89.9 mol % ethylene succinate units and 10.1 mol % butylene succinate units in a random sequence, as revealed by NMR. Isothermal crystallization kinetics was studied in the temperature range (Tc) from 30 to 73 °C using differential scanning calorimetry (DSC). The melting behavior after isothermal crystallization was investigated using DSC by varying the Tc, the heating rate and the crystallization time. DSC curves showed triple melting peaks. The melting behavior indicates that the upper melting peaks are associated primarily with the melting of lamellar crystals with various stabilities. As the Tc increases, the contribution of recrystallization slowly decreases and finally disappears. A Hoffman‐Weeks linear plot gives an equilibrium melting temperature of 107.0 °C. The spherulite growth of this copolyester from 80 to 20 °C at a cooling rate of 2 or 4 °C/min was monitored and recorded using an optical microscope equipped with a CCD camera. Continuous growth rates between melting and glass transition temperatures can be obtained after curve‐fitting procedures. These data fit well with those data points measured in the isothermal experiments. These data were analyzed with the Hoffman and Lauritzen theory. A regime II → III transition was detected at around 52 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2431–2442, 2008  相似文献   

17.
This article investigated the melting behaviors, crystallization kinetics, and spherulitic morphologies of poly(butylene succinate) (PBS) and its copolyester (PBSR) modified with rosin maleopimaric acid anhydride, using wide‐angle X‐ray diffraction, differential scanning calorimeter (DSC), and polarized optical microscope. Subsequent DSC scans of isothermally crystallized PBS and PBSR exhibited two melting endotherms, respectively, which was due to the melt‐recrystallization process occurring during the DSC scans. The equilibrium melting point of PBSR (125.9 °C) was lower than that of PBS (139 °C). The commonly used Avrami equation was used to describe the isothermal crystallization kinetics. For nonisothermal crystallization studies, the model combining Avrami equation and Ozawa equation was employed. The result showed a consistent trend in the crystallization process. The crystallization rate was decreased, the perfection of crystals was decreased, the recrystallization was reduced, and the spherulitic morphologies were changed when the huge hydrogenated phenanthrene ring was added into the chain of PBS. The activation energy (ΔE) for the isothermal crystallization process determined by Arrhenius method was 255.9 kJ/mol for PBS and 345.7 kJ/mol for PBSR. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 900–913, 2006  相似文献   

18.
The crystallization behavior of biodegradable poly(butylene succinate) and copolyesters poly(butylene succinate‐co‐propylene succinate)s (PBSPS) was investigated by using 1H NMR, DSC and POM, respectively. Isothermal crystallization kinetics of the polyesters has been analyzed by the Avrami equation. The 2.2‐2.8 range of Avrami exponential n indicated that the crystallization mechanism was a heterogeneous nucleation with spherical growth geometry in the crystallization process of polyesters. Multiple melting peaks were observed during heating process after isothermal crystallization, and it could be explained by the melting and recrystallization model. PBSPS was identified to have the same crystal structure with that of PBS by using wide‐angle X‐ray diffraction (WAXD), suggesting that only BS unit crystallized while the PS unit was in an amorphous state. The crystal structure of polyesters was not affected by the crystallization temperatures, too. Besides the normal extinction crosses under the POM, the double‐banded extinction patterns with periodic distance along the radial direction were also observed in the spherulites of PBS and PBSPS. The morphology of spherulites strongly depended on the crystallization temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 420–428, 2007  相似文献   

19.
The double melting behavior of a thermotropic liquid crystalline polyimide was studied by means of differential scanning calorimetry (DSC), polarized light microscopy (PLM), transmission electron microscopy (TEM), wide‐angle X‐ray diffraction (WAXD), and small‐angle X‐ray scattering (SAXS). This liquid crystalline polyimide exhibited a normal melting peak around 278 °C and transformed into a smectic A phase. The smectic A phase changed to nematic phase upon heating to 298 °C, then became isotropic melt around 345 °C. The samples annealed or isothermally crystallized at lower temperature showed double melting endotherms during heating scan. The annealing‐induced melting endotherm was highly dependent on annealing conditions, whereas the normal melting endotherm was almost not influenced by annealing when the annealing temperature was low. Various possibilities for the lower melting endotherm are discussed. The equilibrium melting points of both melting peaks were extrapolated to be 283.2 °C. Combined analytical results showed that the double melting peaks were from the melting of the two types of crystallites generated from two crystallization processes: a slow and a fast one. Fast crystallization may start from the well‐aligned liquid crystal domains, whereas the slow one may be from the fringed or amorphous regions. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3018–3031, 2000  相似文献   

20.
Poly(phenylene sulfide)/low‐melting‐point metal composites (PPSMs) with various loading levels were prepared by melt compounding. The nonisothermal crystallization behavior and transient viscoelastic properties were characterized by the DSC, POM, DMA, and parallel‐plate rheometer. The results reveal that the low‐melting‐point metal (LMPM) particles show nice dispersion at relative low content levels (< 30 wt %). The PPSMs composites present dual characteristics of both the filled polymer composite and polymer blend system in their transient viscoelastic behaviors, which results in occurrence of the stress overshoots with long relaxation time and nonzero residual stress especially at high shear levels. During the crystallization process, the presence of those deformable LMPM droplets facilitates the crystallization kinetics of PPS because of their flow‐promoting action. On the other hand, the LMPM has no heterogeneous nucleating effect and, only plays the role of inert filler, which results in the degradation of the crystal structure of PPS. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 677–690, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号