首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Porous three‐dimensional collagen/chitosan scaffolds combined with poly (ethylene glycol) (PEG) and hydroxyapatite were obtained through a freeze‐drying method. Physical cross‐linking was examined by dehydrothermal treatment. The prepared materials were characterized by different analyses, eg, scanning electron microscopy (SEM), measurements of porosity and swelling, mechanical properties, and resistance to enzymatic degradation. The porosity of scaffolds and their swelling ratio decreased with the addition of hydroxyapatite. Moreover, after exposure to collagenase, the collagen/chitosan matrices containing PEG showed much faster degradation rate than matrices with the addition of hydroxyapatite. The results indicated that the addition of hydroxyapatite led to improvement of stiffness. The highest degree of porosity and swelling were demonstrated by collagen/chitosan/PEG matrices without hydroxyapatite.  相似文献   

2.
Chitosan (CS) is a biocompatible, noncytotoxic biomaterial used before as base material for composites. On the other hand, nano‐hydroxyapatite (nHA) is one of the main components of human bones, highly used for biomedical applications. In this work, CS microspheres were produced under a W/O emulsion system. CS microspheres with calcium ions were then exposed to Na3PO4 solution. In situ biomimetic nHA crystals were formed on CS microspheres to generate 15.14 ± 3.15‐μm composite microspheres. The microspheres were subsequently seeded with MG63 osteoblasts to observe their cell responses. All microspheres were characterized via scanning electron microscopy (SEM), phase‐contrast photomicroscopy, and X‐ray diffraction (XRD) analysis. The results showed flake‐like shape and islet‐like growth of nHA depositions presented on the surface of the CS microspheres. In vitro tests indicated that the CS/nHA microparticles were not only biocompatible but also enhanced cell adhesion and elongation due to the in situ biomimetic synthesis method.  相似文献   

3.
In this work, new polyoxymethylene (POM)/hydroxyapatite (HAp) nanocomposites for long‐term bone implants have been obtained via extrusion and injection molding processes and characterized by differential scanning calorimetry (DSC), temperature‐modulated DSC (TMDSC), scanning electron microscopy (SEM), transmission electron microscopy (TEM), wide‐angle X‐ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG), and tensile mechanical and in vitro stability tests. Based on the DSC results, it was found that the degree of crystallinity increases for POM/0.5% HAp sample and decreases for POM/1.0% HAp and POM/2.5% HAp. SEM and TEM observations for POM/HAp nanocomposites indicated that the dispersion of HAp in the polymer matrix was uniform and the diameter of the HAp particles was less than 100 nm for most of them. Young's modulus increases with increasing HAp concentration, whereby elongation at break decreases. On the contrary, HAp concentration does not have a significant influence on the tensile strength. TG results show that for POM/0.5% HAp, POM/1.0% HAp, and POM/2.5% HAp, thermal stability slightly increases in comparison to pure POM, whereas for POM/5.0 HAp and POM/10.0% HAp, lower thermal stability was observed. In vitro data reveal that with an increase of HAp content, bioactivity of nanocomposites increases; a good in vitro chemical stability of POM and POM nanocomposites was confirmed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A biocomposite of hydroxyapatite (HAp) with electrospun nanofibrous scaffolds was prepared by using chitosan/polyvinyl alcohol (CS/PVA) and N-carboxyethyl chitosan/PVA (CECS/PVA) electrospun membranes as organic matrix, and HAp was formed in supersaturated CaCl2 and KH2PO4 solution. The influences of carboxylic acid groups in CECS/PVA fibrous scaffold and polyanionic additive poly(acrylic acid) (PAA) in the incubation solution on the crystal distribution of the HAp were investigated. Field-emission scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS), wide-angle X-ray diffraction (WAXD), and Fourier transform infrared (FTIR) were used to characterize the morphology and structure of the deposited mineral phase on the scaffolds. It was found that addition of PAA to the mineral solution and use of matrix with carboxylic acid groups promoted mineral growth and distribution of HAp. MTT testing and SEM imaging from mouse fibroblast (L929) cell culture revealed the attachment and growth of mouse fibroblast on the surface of biocomposite scaffold, and that the cell morphology and viability were satisfactory for the composite to be used in bioapplications.  相似文献   

5.
Chitosan (Cs) and hydroxyapatite (Ha) were analysed by X‐ray photoelectron spectroscopy (XPS). Phosphorylated Cs microparticles and hybrid Cs/Ha microparticles were prepared and analysed by XPS before and after immersion in a solution 1.5 times more concentrated than a simulated body fluid (SBF). The accuracy of spectrum recording, peak decomposition and peak component assignment was insured by a post‐control of charge stabilization, and by the examination of correlations between spectral data guided by stoichiometry and charge balance. The concentration of organic oxygen was determined from the concentrations of the oxidized forms of carbon, allowing a sharper insight into speciation and O 1s peak shape. This indicated that the hydroxide ion of Ha, and hydrogenophosphate if present, give a contribution near 532.4 eV, which overlaps with organic oxygen. As a result of immersion in the 1.5*SBF solution, the formation of CaCO3 and of Ha material occurred. A quantification could be made for the constituents of biomaterial interest, contaminating salts and paraffin oil residues from the microparticle manufacturing process. The uncertainties regarding the nature of the model calcium phosphate used and the best marker for calcium carbonate were addressed by comparing the possible effect on the output, which was facilitated by using ternary composition diagrams. Whatever their formulation, the native microparticles were found to be coated by a thick layer of paraffin oil. The induction of calcium carbonate and phosphate precipitation or the retention of precipitates by the microparticles was favored by the presence of phosphate in the initial formulation either by phosphorylation or by incorporation of Ha. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Here, we demonstrated the fabrication of a composite scaffold (chitosan [CS], collagen [Col], and hydroxyapatite [HA]) with the incorporation of encapsulated Cissus quadrangularis (CQ) extract for tissue engineering applications. First, the crude extract of CQ loaded nanoparticles were synthesized via double emulsion technique using polycaprolactone (PCL) and polyvinyl alcohol (PVA) as oil and aqueous phases, respectively. Both PCL (20, 40, and 80 mg/mL) and PVA (0.5%, 1%, and 3% w/v) concentrations were varied to determine the optimum concentrations for CQ‐loaded nanoparticle preparation. The CQ‐loaded PCL nanoparticles (CQ‐PCL NPs), prepared with 20 mg/mL PCL and 0.5% (w/v) PVA, exhibited the smallest size of 334.22 ± 43.21 nm with 95.54 ± 1.49% encapsulation efficiency. Then, the CQ‐PCL NPs were incorporated into the CS/Col/HA scaffolds. These scaffolds were also studied for their ultrastructure, pore sizes, chemical composition, compressive modulus, water swelling, weight loss, and biocompatibility. The results showed that the addition of CQ‐PCL NPs into the scaffolds did not dramatically alter the ultrastructure and properties of the scaffolds, compared to CS/Col/HA scaffolds alone. However, incorporation of CQ‐PCL NPs in the scaffolds improved the release profile of CQ by preventing the initial burst release and prolonging the release rate of CQ. In addition, the CQ‐PCL NPs‐loaded CS/Col/HA scaffolds supported the attachment and proliferation of MC3T3‐E1 osteoblast cells.  相似文献   

7.
Two sets of homemade apparatus have been utilized to fabricate collagen/chitosan porous membranes by quenching its acetic solution and subsequently extracting the solvent with ethanol. The influence of chitosan concentration on the surface morphology of the collagen/chitosan membranes was studied using a quenching cold plate (apparatus 1). The pore size was enlarged along with an increase in the chitosan content, accompanied with the emergence of a sheet‐like microstructure. Due to the large thermal conductivity of the membrane‐forming platform (stainless steel), collagen/chitosan membranes prepared using apparatus 1 at freezing temperature between ?60 to ?20 °C present similar pore size (2–4 nm) and surface morphology. However, a large difference in pore size is generated using apparatus 2 (membrane preparation in a cold ethanol bath) and using a membrane‐forming platform of poor thermal conductivity (polymethylmethacrylate), e.g. ~10 to 20 μm at freezing temperature of ?60 to ?40 °C, and 265 μm at ?20 °C accompanied with the transformation from fiber‐ to sheet‐dominated morphology. The spongy collagen/chitosan membranes with pore sizes ranging from tens to hundreds of micrometers and porosity higher than 95%, which could be used as dermal regeneration template, have thus been fabricated. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
In the present research, chitosan/collagen and chitosan/collagen/nano-hydroxyapatite (nHAP) hydrogel nanocomposites were prepared using naturally extracted chitosan from Persian Gulf shrimp wastes and rat tail-tendon collagen. Freeze-gelation method was used to prepare highly porous scaffolds. The morphology, chemical structure, water retainability, and thermal properties were characterized using SEM, FTIR, water content experiment, simultaneous thermal analysis (STA), respectively. Atomic force microscopy (AFM) nanoindentation and unconfined compression test were used to assess different feature of the mechanical properties of the hydrogels. The obtained results were so promising that the prepared nanocomposites can be considered as a potential candidate for cartilage tissue engineering.  相似文献   

9.
This work reports an optimized and simple methodology for the preparation of poly(L‐lactic) acid/chitosan (CHT) blends by solvent casting based on the use of a common solvent: hexafluor‐2‐propanol. Films with different component fractions were successfully prepared and did not show visible phase separation. Such biodegradable films have potential to be used in distinct biomedical and environmental applications. The composition effect on film wettability and morphology was investigated by contact angle measurements and scanning electron microscopy. Swelling measurements were also conducted. The composition effect on their thermal properties was analyzed by differential scanning calorimetry. It was found that crystallization is almost suppressed for CHT fractions above 50%. The film miscibility as a function of their composition was evaluated by optical microscopy and Fourier transform infrared spectroscopy imaging. These results evidenced the good miscibility at the microscopic level of the blends. The viscoelastic behavior of the developed films was also studied for the first time by dynamical mechanical analysis (DMA) in an unconventional way: their mechanical properties were measured while they were immersed in gradient compositions of water/ethanol mixtures. This allowed to analyze the glass transition dynamics of the CHT fraction, which would not be possible with conventional DMA tests. DMA temperature scans were also conducted. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Based on a biomimetic conception, nano‐hydroxyapatite (n‐HA)/polyamide66 (PA66) composite scaffolds were prepared with anisotropic properties both in morphology and mechanical behavior. A novel improved thermally induced phase separation (TIPS) technique was developed to generate orientation‐structured scaffolds for tissue engineering. The physiochemical, morphological, and mechanical properties of the resultant scaffolds were evaluated. According to the results, the improved TIPS method exhibited good processability and reproducibility and enabled the composite scaffolds to have a high content of inorganic fillers. The morphological study proved that the n‐HA/PA66 scaffolds exhibited unidirectional microtubular architecture with high porosity (ca. 80–85%) and an optimal pore size ranging from 200 to 500 μm. Besides, the effect of n‐HA content on the morphology of the scaffolds was studied, and the results indicated that the obtained scaffolds presented an improvement in anisotropic morphology with increase of n‐HA content. The anisotropy was also evaluated in the mechanical properties of the scaffolds, that is, the longitudinal compressive strength and modulus were ~1.5 times of the transverse ones. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 658–669, 2009  相似文献   

11.
Various composites have been proposed in the literature for the fabrication of bioscaffolds for bone tissue engineering. These materials include poly(ε‐caprolactone) (PCL) with hydroxyapatite (HA). Since the biomaterial acts as the medium that transfers mechanical signals from the body to the cells, the fundamental properties of the biomaterials should be characterized. Furthermore, in order to control the processing of these materials into scaffolds, the characterization of the fundamental properties is also necessary. In this study, the physical, thermal, mechanical, and viscoelastic properties of the PCL‐HA micro‐ and nano‐composites were characterized. Although the addition of filler particles increased the compressive modulus by up to 450%, the thermal and viscoelastic properties were unaffected. Furthermore, although the presence of water plasticized the polymer, the viscoelastic behavior was only minimally affected. Testing the composites under various conditions showed that the addition of HA can strengthen PCL without changing its viscoelastic response. The results found in this study can be used to further understand and approximate the time‐dependent behavior of scaffolds for bone tissue engineering. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
In the present study porcine skin and bovine pericardium were used as a source of type I collagen. Both were submitted to an alkaline treatment and mineralized by the alternate soaking method. Thermal stability and extent of mineralization have been investigated using DSC and TG. After alkaline hydrolysis there is a decrease in thermal stability but mineralization stabilizes collagen structure. Thermogravimetric data have shown that the amount of hydroxyapatite present in bovine pericardium matrix (45%) was greater than on porcine skin matrix (20%). Presence of hydroxyapatite was confirmed by EDX.  相似文献   

13.
In this article, the effects of fundamental parameters including applied voltage, feed rate of solution, collecting distance of fibers, the ratio of chitosan to collagen in the fibers and polymer solution concentration on the diameter and morphology of electrospun collagen‐chitosan complex nanofibers were studied to produce ultrafine polymer fibers. Based on the systematic parametric study, it is possible to control the diameter and morphology of the electrospun polymer fibers. This will also be helpful for electrospinning of various polymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1949–1955, 2009  相似文献   

14.
The material surface must be considered in the design of scaffolds for bone tissue engineering so that it supports bone cells adhesion, proliferation and differentiation. A biomimetic approach has been developed as a 3D surface modification technique to grow partially carbonated hydroxyapatite (the bonelike mineral) in prefabricated, porous, polymer scaffolds using a simulated body fluid in our lab. For the rational design of scaffolding materials and optimization of the biomimetic process, this work focused on various materials and processing parameters in relation to apatite formation on 3D polymer scaffolds. The apatite nucleation and growth in the internal pores of poly(L-lactide) and poly(D,L-lactide) scaffolds were significantly faster than in those of poly(lactide-co-glycolide) scaffolds in simulated body fluids. The apatite distribution was significantly more uniform in the poly(L-lactide) scaffolds than in the poly(lactide-co-glycolide) scaffolds. After incubation in a simulated body fluid for 30 d, the mass of poly(L-lactide) scaffolds increased approximately 40%, whereas the mass of the poly(lactide-co-glycolide) scaffolds increased by about 15% (see Figure). A higher ionic concentration and higher pH value of the simulated body fluid enhanced apatite formation. The effects of surface functional groups on apatite nucleation and growth were found to be more complex in 3D scaffolds than on 2D films. Surprisingly enough, it was found that carboxyl groups significantly reduced the apatite formation, especially on the internal pore surfaces of 3D scaffolds. These findings are critically important in the rational selection of materials and surface design of 3D scaffolds for mineralized tissue engineering and may contribute to the understanding of biomineralization as well.SEM micrograph of a poly(L-lactide) scaffold.  相似文献   

15.
16.
《化学:亚洲杂志》2017,12(6):655-664
Highly flexible hydroxyapatite/collagen (HAP/Col) composite membranes are regarded to be significant for guided bone regeneration application owing to their similar chemical composition to that of natural bone, excellent bioactivity and good osteoconductivity. However, the mechanical strength of the HAP/Col composite membranes is usually weak, which leads to difficult surgical operations and low mechanical stability during the bone healing process. Herein, highly flexible ultralong hydroxyapatite nanowires/collagen (UHANWs/Col) composite biopaper sheets with weight fractions of UHANWs ranging from 0 to 100 % are facilely synthesized. The UHANWs are able to weave with each other to construct a three‐dimensional fabric structure in the collagen matrix, providing a strong interaction between UHANWs and an intermolecular force between UHANWs and the collagen matrix. The as‐prepared UHANWs/Col composite biopaper exhibits improved mechanical properties and high flexibility. More importantly, the as‐prepared highly flexible 70 wt % UHANWs/Col composite biopaper exhibits an excellent cytocompatibility and outstanding cellular attachment performance as compared with the pure collagen and 70 wt % HAP nanorods/Col membranes. In consideration of its superior mechanical properties and outstanding cellular attachment performance, the as‐prepared UHANWs/Col composite biopaper is promising for applications in various biomedical fields such as guided bone regeneration.  相似文献   

17.
以尿素沉淀剂,运用溶液均匀共沉淀法制得纤维状羟基磷灰石(HAP)和无定形颗粒状守壳聚糖(CS)的复合粉体,通过水势处理调整纤维状HAP晶粒尺寸的大小,对粉体进行了XRD、TEM、IR及化学组成(Ca/P)表征。均匀一水热共沉淀过程中,pH值对粉体Ca/P、XRD、TEM、IR有很大影响。  相似文献   

18.
Poly(ethylene terephthalate) (PET) fiber was treated with 60Co-γ-ray and grafted with acrylic acid (AA). The resulting fibers were further grafted with chitosan (CS) via esterification. Afterward collagen (COL) was immobilized onto CS-grafting fibers. The antibacterial activity of CS against Staphylococus aureus, Escherichia coli, and Pseudomonas aeruginosa was preserved after COL-immobilization. After immobilizing COL, the L929 fibroblasts cell proliferation was promoted than CS-grafting PET fiber. The results indicate that by grafting with CS and immobilizing with COL, PET fibers exhibited both antibacterial activity against four pathological bacteria and improvement in the proliferation of fibroblast. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Phospho‐L‐glutamic acid was successfully prepared by the phosphorylation of glutamic acid, and its adsorption on synthetic hydroxyapatite (HAP) was studied together with glutamic. The adsorption behaviors of both adsorbates were adequately described by a Langmuirian model. From the comparison between two different adsorbates, the results of the investigation indicated that the phosphate group in phospho‐L‐glutamic acid can greatly enhanced the adsorption affinity for HAP, the improvement of which was achieved through replacing the same group on the surface of HAP and interacting with the surface calcium ion of HAP by electrostatic attraction. The results obtained laid the solid foundation for further research on the regulating function of phosphorylated amino acids with hydroxyapatite biological composites. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Chitosan‐g‐polycaprolactone copolymers (CPCs) with desired composition proportions were synthesized by carefully controlling the weight ratio of polycaprolactone side chains changing approximately between 45 and 48 wt% so that the obtained CPCs could be further processed via different processing techniques. Aqueous acetic acid solutions and dimethyl sulfoxide were respectively employed as solvents to fabricate CPCs into fibrous mesh scaffolds that had nearly similar parameters characterized by the average porosity and pore‐size of scaffolds as well as the average diameter of filaments under optimal processing conditions. The swelling index, surface group analysis, antibacterial activity and tensile mechanical properties of these mesh scaffolds were investigated in several ways, and the scaffolds showed quite different properties due to the different processing methods employed, although the same type of CPC was used. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号