首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The copolymerization reaction of butadiene and styrene copolymers prepared by anionic living polymerization using an initiator composed of alkyl aluminum, n‐butyl lithium, and barium alkoxide is studied using a kinetic model that considers the reactivity of active sites to be different; this assumption is justified by the varying geometric configurations. With the first‐order Markov model, the expressions for the fraction of active sites and dyad distribution are obtained. The rate constants are determined by fitting to the conversion and Bernoulli dyad data using the nonlinear least squares method. The conversion and dyad sequence distribution are correctly predicted, and the experimental results indicate that the microstructure and sequence distribution do not change with the conversion and temperature.

  相似文献   


2.
A kinetic model that considers three geometric active sites—cis, trans and vinyl—was proposed to the study polymerization reaction of high 1,4‐trans‐polybutadiene (TPBD) prepared by means of anionic living polymerization using an initiator composed of alkyl aluminium, n‐butyllithium and barium alkoxide. The conversion and dyad sequence distribution was correctly predicted; the kinetic results indicated that the microstructure and sequence distribution do not change with the conversion and temperature within the range of temperature investigated (40–80 °C). In addition, it was observed that the addition mechanism of butadiene to the active sites is entropic.

  相似文献   


3.
We investigated the anionic polymerization of butadiene in d-heptane solvent using tert-butyl lithium as initiator. Two complementary techniques were used to follow the polymerization processes: 1H NMR and small angle neutron scattering (SANS). The time resolved 1H NMR measurements allowed us to evaluate quantitatively the kinetics of the processes involved. The initiation event commences slowly and then progressively accelerates. This indicates an autocatalytic mechanism. The microstructure of the first monomer units attached is to a high extent 1,2. The disappearance of initiator --- at about 10% monomer conversion --- signals the onset of the normal ∼6% vinyl content of the chain. Small angle neutron scattering was used to study the aggregation behavior of the carbon lithium head groups. It is well known that the polar head groups aggregate and form micellar structures. For dienes in non-polar solvents the textbook mechanism assumes the formation of only tetramers during the propagation reaction. By combining 1H NMR and SANS results we were able to determine quantitatively the aggregation number during all stages of the polymerization. Our measurements show the existence of large-scale structures during the initiation period. The initial degree of aggregation of more than 100 living polymer chains diminished as the polymerization progressed. In addition, even larger, giant structures with Nagg >>1000 and Rg ≈ 1000Å were found.  相似文献   

4.
The anionic polymerization behavior of 2‐methyl‐4‐phenyl‐1‐buten‐3‐yne (2) was investigated to get information on the effect of substituent at the 2‐position. The polymerization of 2 did not proceed in tetrahydrofuran at –78°C by lithium initiators, while sodium initiators can conduct the polymerization smoothly to give polymers consisting of a specific 1,2‐polymerized unit. The living nature of the polymerization of 2 by diphenylmethylsodium was supported by the post‐polymerization experiment.  相似文献   

5.
Diphenylethylene (DPE) is a monomer which has attracted significant interest from academia and industry both in terms of copolymerization kinetics and for the potential to extend and tune the range of glass transition temperatures accessible for DPE‐containing copolymers. DPE can undergo (co)polymerization with a variety of other monomers by living anionic polymerization but is incapable of forming a homopolymer due to steric hindrance. DPE, being a sterically bulky monomer, results in dramatic increases in the glass transition temperature (Tg) of resulting copolymers, with a perfectly alternating copolymer of styrene and DPE having a Tg of ~180 °C. Herein we report for the first time, the outcome of the statistical terpolymerization of butadiene, styrene, and DPE—a one‐pot, one‐shot, commercially scalable reaction using monomers of wide industrial importance. This extremely facile approach produces copolymers with a block‐like structure, which undergo microphase separation, possess a high Tg glassy “block” and are virtually indistinguishable from analogous block terpolymers made by the traditional sequential addition of monomers approach. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 382–394  相似文献   

6.
7.
Novel complexes [(C5Me5)2Ln][B(C6F5)4] (Ln = Pr, Nd, or Gd) were prepared, which in combination with iBu3Al efficiently induce highly 1,4‐cis‐specific polymerization of butadiene. The activity of the Gd complex/iBu3Al system is high enough to exhibit good catalytic activity even at low temperature. Polymerization at −78 °C gave polybutadiene with nearly perfect 1,4‐cis microstructure (>99.9%) with sharp molecular weight distribution (M w/M n = 1.45) and in reasonable yield.

ORTEP drawing of 2b . Selected bond distances (Å): Pr‐F1 = 2.549(2), Pr‐F19 = 2.625(2).  相似文献   


8.
The successful activation observed when using ButP4 phosphazene base and thiophenol or bisthiols for the anionic ring opening polymerization (ROP) of di‐n‐propyl cyclopropane‐1,1‐dicarboxylate is described. Well‐defined monofunctional or difunctional polymers with a very narrow molecular weight distribution were obtained through a living process. Quantitative end‐capping of the propagating malonate carbanion was accessible by using either an electrophilic reagent such as allyl bromide or a strong acid such as HCl. Kinetics studies demonstrated a much higher reactivity compared to the conventional route using alkali metal thiophenolates.

  相似文献   


9.
Attempted preparation of ω‐formyl‐functionalized polydienes by termination of poly(butadienyl)lithium and poly(isoprenyl)lithium with 4‐morpholinecarboaldehyde resulted in 73 and 38% dimer formation (SEC), respectively, under conditions that quantitativey produced ω‐formyl‐functionalized polystyrene. Dimer formation was attributed to postfunctionalization, base‐catalyzed, aldol‐type condensation based on FTIR and 1H‐NMR analysis of the dimer products. High yields (>97%) of ω‐formyl‐functionalized polydienes were formed by workup using acidic methanol; quantitative functionalization resulted from end capping the polymeric organolithium chain ends with 1,1‐diphenylethylene prior to the functionalization reaction. The ω‐formylpolydienes were characterized by hydroxylamine end‐group titration, FTIR, and both 1H‐ and 13C‐NMR spectroscopy. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1143–1156, 1999  相似文献   

10.
A novel method is described for transforming an anionic polymerization process into a cationic polymerization process assisted by organosilyl groups. The reaction of the p‐tolyldimethylsilyl end group of polystyrene and trifluoromethanesulfonic acid produced a silyl triflate end group that served as a macroinitiator for the living cationic polymerization of isobutyl vinyl ether. The Si O linkage in the block copolymers underwent specific cleavage by reaction with tetrabutylammonium fluoride.

  相似文献   


11.
The polymerization of ?‐caprolactone initiated by two catalyst systems was studied: (1) carbazole‐potassium in the presence of 18‐crown‐6 ether and (2) NdCl3/TBP/TIBA (neodymiumtrichloride/tri‐n‐butyl‐phosphate/triisobutylaluminium) at the molar ratio 1/3/1. For both initiator systems conversion/time plots were determined and the polymers were characterized by IR, GPC and by 1H‐ and 13C?NMR spectroscopy. Polyesters with the highest molecular weight (M n?44 000 g/mol) were obtained for the polymerizations initiated by the carbazole‐potassium/18‐crown‐6 ether system. The features of the polymerization initiated by the carbazole‐potassium/18‐crown‐6 ether system are discussed on the basis of a simple scheme. The nature of this polymerization is non‐living. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
N‐Isopropyl‐4‐vinylbenzylamine (PVBA) was synthesized and used as an initiator for the polymerization of methacrylates to synthesize macromonomers with terminal styrenic moieties. LiPVBA initiated a living polymerization and block copolymerization of methyl methacrylate, 2‐(N,N‐dimethylamino)ethyl methacrylate and tert‐butyl methacrylate and produced polymers having well‐controlled molecular weights and very low polydispersities (w/n < 1.1) in quantitative yield. 1H NMR analysis revealed that the polymers contained terminal 4‐vinylbenzyl groups. The macromonomers were reactive in the copolymerization with styrene.  相似文献   

13.
The formal [2+2] cycloaddition–retroelectrocyclization (CA–RE) reactions between tetracyanoethylene (TCNE) and strained, electron‐rich dibenzo‐fused cyclooctynes were studied. The effect of ring strain on the reaction kinetics was quantified, revealing that the rates of cycloaddition using strained, cyclic alkynes are up to 5500 times greater at 298 K than those of reactions using unstrained alkynes. Cyclobutene reaction intermediates, as well as buta‐1,3‐diene products, were isolated and their structures were studied crystallographically. Isolation of a rare example of a chiral buta‐1,3‐diene that is optically active and configurationally stable at room temperature is reported. Computational studies on the enantiomerization pathway of the buta‐1,3‐diene products showed that the eight‐membered ring inverts via a boat conformer in a ring‐flip mechanism. In agreement with computed values, experimentally measured activation barriers of racemization in these compounds were found to be up to 26 kcal mol?1.  相似文献   

14.
《中国化学》2018,36(10):934-938
It still remains a concern to break through the bottlenecks of anionic polymerization of polar monomers, such as side reactions, low conversion and low temperature (–78°C). In this work, potassium tert‐butoxide (t‐BuOK) was chosen to initiate the anionic polymerization of 2‐ethylhexyl methacrylate (EHMA) in tetrahydrofuran. The conversions were above 99% at 0 or 30°C, and above 95% at 60°C without side reaction inhibitors. The high conversions implied t‐BuOK could suppress the side reactions. A series of block copolymers of EHMA, n‐hexyl methacrylate (HMA) and methyl methacrylate (MMA) were further synthesized at 0°C, and the conversions were all above 99%. The GPC and 1H NMR results confirmed the successful synthesis of the block copolymers. The molecular size of monomer and the state of t‐BuOK (free ion pairs or aggregates) remarkably affected the polymerization rates and the molecular structures of the products. The DMA results indicated that the glass transition temperatures of PEHMA or PHMA block and PMMA block were 20°C and 60°C, respectively, which deviated from –2°C and 105°C of homopolymer, respectively, due to the partial compatibility of the blocks. This work explored a route of the anionic polymerization of polar monomers at room temperature.  相似文献   

15.
Mathematical models are developed to describe the polymerization of ethylene and 1‐hexene with a constrained geometry catalyst (CGC‐Ti) and with bis(cyclopentadienyl)‐zirconium (IV) dichloride (Cp2ZrCl2). Particle swarm optimization is used to fit these models to homo‐ and copolymerization data. The models are also used to describe copolymerizations with mixtures of CGC‐Ti and Cp2ZrCl2 to make copolymers with inverse short chain branching distribution. Copolymer molecular weight and short chain branch distributions, as well as polymerization rates with the dual metallocene system, are measured to test whether they agreed with model predictions. The results show that the two metallocenes do not interact strongly when used as a mixture to make ethylene/1‐hexene copolymers.  相似文献   

16.
The anionic polymerization of butadiene initiated with 1,4‐dilithio‐1,1,4,4‐tetraphenylbutane (LiTPB) in diethyl ether (DEE) gives polybutadiene (PBD) with high 1,2 content (>70%), narrow polydispersities (1.04 < Mw/Mn < 1.20), and predicted molecular weights. In THF, this polymerization does not work very well. After removal of DEE and addition of THF, the PBD dianion is end capped quantitatively by addition of 1,1‐diphenylethylene (DPE) to give the diphenylalkyl end capped PBD dianion. Subsequent addition of methyl methacrylate at low temperatures results in the formation of well‐defined PMMA‐b‐PBD‐b‐PMMA triblock copolymers. The results are accounted for by taking into account the effects of Li ion solvation on the BD initiation and end capping of the PBD anion by DPE. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2198–2206, 2009  相似文献   

17.
The anionic polymerization of derivatives of 4‐phenyl‐1‐buten‐3‐yne was carried out to investigate the effect of substituents on the polymerization behavior. The polymerization of 4‐(4‐fluorophenyl)‐1‐buten‐3‐yne and 4‐(2‐fluorophenyl)‐1‐buten‐3‐yne in tetrahydrofuran at −78 °C with n‐BuLi/sparteine as an initiator gave polymers consisting of 1,2‐ and 1,4‐polymerized units in quantitative yields with ratios of 80/20 and 88/12, respectively. The molecular weights of the polymers were controlled by the ratio of the monomers to n‐BuLi, and the distribution was relatively narrow (weight‐average molecular weight/number‐average molecular weight < 1.2), supporting the living nature of the polymerization. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1016–1023, 2001  相似文献   

18.
The anionic polymerization of (E)‐1,3‐pentadiene (EP) and (Z)‐1,3‐pentadiene (ZP) together with mixture of the E/Z isomers are investigated, respectively. The kinetic analysis shows that the activation energy for EP (86.17 kJ/mol) is much higher than that for ZP (59.03 kJ/mol). GPC shows that it is the EP rather than the ZP isomer that undergoes anionic living polymerization affording quantitative products of the polymers with well‐controlled molecular weights and narrow molecular weight distributions (1.05 ≤? ≤ 1.09). In addition, THF as polar additive has proved its validity to reduce the molecular weight distribution of poly(ZP) from 1.38 to as low as 1.19. The microstructure and sequence distributions of polypentadiene are characterized by 1H NMR and quantitative 13C NMR. Finally, the distinctive reaction activity of two isomers can be elucidated by two different mechanisms which involve the presence of four forms of zwitterions for EP and the typical [1,5]‐sigmatropic hydrogen‐shift phenomenon for ZP. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2291–2301  相似文献   

19.
A rod‐coil‐rod block copolymer, polyhexylisocyanate‐block‐polystyrene‐block‐polyhexylisocyanate, of controlled molecular weight was synthesized quantitatively via living anionic polymerization using potassium naphthalenide in the presence of sodium tetraphenylborate. The use of K+ as the counterion for the polymerization of styrene, and Na+ (NaBPh4) for the polymerization of isocyanate leads to the formation of a well‐controlled novel triblock copolymer.

  相似文献   


20.
The first‐ever grafting of poly(1,3‐cyclohexadiene) (PCHD) onto single‐walled carbon nanotubes (SWNTs) was accomplished by reaction with poly(1,3‐cyclohexadienyl)lithium. The rate of this reaction was especially slow due to the heterogeneous nature of the reaction system. The concentration of active carbons available for reaction with PCHDLi on the solid surface of the SWNTs was found to be approximately 2.0 mol %. The mass of PCHD attached to the SWNTs was effectively controlled by varying the molecular weight of the PCHD. The resulting PCHD‐grafted SWNTs exhibited excellent solubility in organic solvent, maintaining a highly stable homogeneous dispersion even after 3 months. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号