首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A three‐dimensional (3D) 3d‐4f complex, [Cu(en)2][Sm2(C5O5)(C2O4)3(H2O)2] · 8H2O ( 1 ) (en = ethylenediamine, C5O52– = dianion of 4,5‐dihydroxycyclopent‐4‐ene‐1,2,3‐trione), were prepared via the in‐situ ring‐opening oxidation reaction of croconate in the presence of the template‐directed complex, [Cu(en)2]2+ cation. The structural characterization determined by X‐ray diffraction determination reveals that the 3D anionic coordination polymer of [Sm2(C2O4)3(C5O5)(H2O)2]2– in 1 can be describe in terms of in‐plane 2D honeycomb‐like [Sm2(C2O4)3] layered frameworks bridged by oxalate with bis‐chelating mode, being mutually interlinked via the bridge of μ1,2,3,4‐croconate ligands with bis‐chelating coordination mode to complete the 3D open framework, which gives rise to 1D channels with pore size of 14.023 × 11.893 Å (longest atom–atom contact distances) along the b axis. The structure‐directing complex, [Cu(en)2]2+, and solvated water molecules are resided into these honeycomb‐type hexagonal channels. The thermal stability of 1 was further studied by TGA and in‐situ powder X‐ray diffraction measurement.  相似文献   

2.
An assembly of three metal coordination polymers (CPs), [M(bipy)(C4O4)(H2O)2]·3H2O (M = Mn ( 1 ), Fe ( 2 ), Zn ( 3 ), and bipy = 4,4′‐bipyridine, C4O42? (squarate) = dianion of H2C4O4 (squaric acid)), was synthesized and structurally characterized. Single‐crystal X‐ray structural determination reveals that compounds 1 – 3 are iso‐structural, in which the M(II) ions are six‐coordinate in a distorted octahedral geometry. C4O42? and bipy both act as bridging ligands with bis‐monodentate coordination mode connecting the M(II) ions to form a two‐dimensional (2D) layered metal–organic framework (MOF). Adjacent 2D layers are then arranged in parallel and interpenetrated manners to construct their three‐dimensional (3D) supramolecular architecture. Compounds 1 , 2 , and 3 undergo two‐step dehydration processes with the first and second weight losses of 14.1 and 8.6% for 1 , of 12.1 and 7.5% for 2, and of 11.2 and 8.1% for 3 , respectively, corresponding to the weight losses of the three guest water molecules and the two coordinated water molecules, and all exhibit reversible sponge‐like water de/adsorption properties during de/rehydration processes for guest water molecules as per cyclic thermogravimetric analysis (TGA). The single‐crystal‐to‐single‐crystal (SCSC) structural transformation during the reversible de/rehydration processes of three guest water molecules was identified and monitored using exhaustive single‐crystal and powder X‐ray diffraction measurements.  相似文献   

3.
Acidic Sulfates of Neodymium: Synthesis and Crystal Structure of (H5O2)(H3O)2Nd(SO4)3 and (H3O)2Nd(HSO4)3SO4 Light violett single crystals of (H5O2)(H3O)2 · Nd(SO4)3 are obtained by cooling of a solution prepared by dissolving neodymium oxalate in sulfuric acid (80%). According to X‐ray single crystal investigations there are H3O+ ions and H5O2+ ions present in the monoclinic structure (P21/n, Z = 4, a = 1159.9(4), b = 710.9(3), c = 1594.7(6) pm, β = 96.75(4)°, Rall = 0.0260). Nd3+ is nine‐coordinate by oxygen atoms. The same coordination number is found for Nd3+ in the crystal structure of (H3O)2Nd(HSO4)3SO4 (triclinic, P1, Z = 2, a = 910.0(1), b = 940.3(1), c = 952.6(1) pm, α = 100.14(1)°, β = 112.35(1)°, γ = 105.01(1)°, Rall = 0.0283). The compound has been prepared by the reaction of Nd2O3 with chlorosulfonic acid in the presence of air. In the crystal structure both sulfate and hydrogensulfate groups occur. In both compounds pronounced hydrogen bonding is observed.  相似文献   

4.
Synthesis and Crystal Structure of K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4), and Na(HSO4)(H3PO4) Mixed hydrogen sulfate phosphates K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4) and Na(HSO4)(H3PO4) were synthesized and characterized by X‐ray single crystal analysis. In case of K2(HSO4)(H2PO4) neutron powder diffraction was used additionally. For this compound an unknown supercell was found. According to X‐ray crystal structure analysis, the compounds have the following crystal data: K2(HSO4)(H2PO4) (T = 298 K), monoclinic, space group P 21/c, a = 11.150(4) Å, b = 7.371(2) Å, c = 9.436(3) Å, β = 92.29(3)°, V = 774.9(4) Å3, Z = 4, R1 = 0.039; K4(HSO4)3(H2PO4) (T = 298 K), triclinic, space group P 1, a = 7.217(8) Å, b = 7.521(9) Å, c = 7.574(8) Å, α = 71.52(1)°, β = 88.28(1)°, γ = 86.20(1)°, V = 389.1(8)Å3, Z = 1, R1 = 0.031; Na(HSO4)(H3PO4) (T = 298 K), monoclinic, space group P 21, a = 5.449(1) Å, b = 6.832(1) Å, c = 8.718(2) Å, β = 95.88(3)°, V = 322.8(1) Å3, Z = 2, R1 = 0,032. The metal atoms are coordinated by 8 or 9 oxygen atoms. The structure of K2(HSO4)(H2PO4) is characterized by hydrogen bonded chains of mixed HnS/PO4 tetrahedra. In the structure of K4(HSO4)3(H2PO4), there are dimers of HnS/PO4 tetrahedra, which are further connected to chains. Additional HSO4 tetrahedra are linked to these chains. In the structure of Na(HSO4)(H3PO4) the HSO4 tetrahedra and H3PO4 molecules form layers by hydrogen bonds.  相似文献   

5.
Three new alkali metal transition metal sulfate‐oxalates, RbFe(SO4)(C2O4)0.5 · H2O and CsM(SO4)(C2O4)0.5 · H2O (M = Mn, Fe) were prepared through hydrothermal reactions and characterized by single‐crystal X‐ray diffraction, solid state UV/Vis/NIR diffuse reflectance spectroscopy, infrared spectra, thermogravimetric analysis, and powder X‐ray diffraction. The title compounds all crystallize in the monoclinic space group P21/c (no. 14) with lattice parameters: a = 7.9193(5), b = 9.4907(6), c = 8.8090(6) Å, β = 95.180(2)°, Z = 4 for RbFe(SO4)(C2O4)0.5 · H2O; a = 8.0654(11), b = 9.6103(13), c = 9.2189(13) Å, β = 94.564(4)°, Z = 4 for CsMn(SO4)(C2O4)0.5 · H2O; and a = 7.9377(3), b = 9.5757(4), c = 9.1474(4) Å, β = 96.1040(10)°, Z = 4 for CsFe(SO4)(C2O4)0.5 · H2O. All compounds exhibit three‐dimensional frameworks composed of [MO6] octahedra, [SO4]2– tetrahedra, and [C2O4]2– anions. The alkali cations are located in one‐dimensional tunnels.  相似文献   

6.
在水乙醇混合溶剂中,首次得到了2-羰基丙酸水杨酰腙、1,10-菲啰啉与硝酸钆形成的配合物[Gd(C10H9N2O4)(C10H8N2O4)(H2O)3]2·phen·4H2O,并测试了其单晶结构。该配合物属三斜晶系,空间群为P-1。每个配合物分子中有两个九配位的钆的结构单元,每个钆离子与两个三齿配体2-羰基丙酸水杨酰腙(分别以负一价和负二价形式)和三个水分子配位。每个钆单元在空间呈扭曲的单帽四方反棱柱。同时还有一个游离的1,10-菲啰啉存在于晶格中,通过氢键与配位水作用。生物活性试验表明该配合物对三种病原菌有一定的抑菌活性。  相似文献   

7.
The new organotin(IV) squarates and croconates [SnMe2(H2O)2]C4O4 ( 1 ), [SnMe3]2C4O4 ( 2 ), and [SnMe3(H2O)]2C5O5 ( 3 ), were prepared by salt metathesis from the appropriate sodium salts, and characterized by single‐crystal X‐ray diffraction and infrared spectroscopy. While 1 and 2 are coordination polymers with bridging C4O42– anions, compound 3 exists as a monomer in the solid state. In the hydrated compounds 1 and 3 , the molecules are interconnected by various types of O–H ··· O bridges between non‐coordinated carbonyl oxygen atoms and water ligands, resulting in a supramolecular layer ( 1 , 2 ) or network structure ( 3 ), respectively.  相似文献   

8.
A novel mixed‐ligand complex {[Mn(azpy)2(dca)(H2O)2](ClO4)(azpy)(H2O)2}n ( 1 ) has been synthesized and characterized by single crystal X‐ray analysis, elemental analysis, IR spectroscopy and variable temperature magnetic measurement. The 4,4′‐azopyridine and dicyanamide ligands are abbreviated as azpy and dca, respectively. The crystal structure of 1 revealed that the 1D covalent bonding chains constructed by μ1,5‐dca bridging the MnII ions are linked together via O–H···N and O–H···O hydrogen bonds and ππ stacking interactions into a 3D supramolecular structure. V‐shape (bent) water trimers were also found in the structure. The water clusters play an important role in the formation of the 3D supramolecular structure. The determination of the variable temperature magnetic susceptibilities (2–300 K) shows the existence of a very weak antiferromagnetic interaction with a J value of ?0.16 cm?1.  相似文献   

9.
The crystal structures of hydrothermally synthesized aluminium dihydrogen arsenate(V) dihydrogen diarsenate(V), Al(H2AsO4)(H2As2O7), gallium dihydrogen arsenate(V) dihydrogen diarsenate(V), Ga(H2AsO4)(H2As2O7), and diindium bis[dihydrogen arsenate(V)] bis[dihydrogen diarsenate(V)], In2(H2AsO4)2(H2As2O7)2, were determined from single‐crystal X‐ray diffraction data collected at room temperature. The first two compounds are representatives of a novel sheet structure type, whereas the third compound crystallizes in a novel framework structure. In all three structures, the basic building units are M 3+O6 octahedra (M = Al, Ga, In) that are connected via one H2AsO4 and two H2As2O72− groups into chains, and further via H2As2O72− groups into layers. In Al/Ga(H2AsO4)(H2As2O7), these layers are interconnected by weak‐to‐medium–strong hydrogen bonds. In In2(H2AsO4)2(H2As2O7)2, the H2As2O72− groups link the chains in three dimensions, thus creating a framework topology, which is reinforced by weak‐to‐medium–strong hydrogen bonds. The three title arsenates represent the first compounds containing both H2AsO4 and H2As2O72− groups.  相似文献   

10.
Treatment of Pd(PPh3)4 with 5‐bromo‐pyrimidine [C4H3N2Br] in dichloromethane at ambient temperature cause the oxidative addition reaction to produce the palladium complex [Pd(PPh3)21‐C4H3N2)(Br)], 1 , by substituting two triphenylphosphine ligands. In acetonitrile solution of 1 in refluxing temperature for 1 day, it do not undergo displacement of the triphenylphosphine ligand to form the dipalladium complex [Pd(PPh3)Br]2{μ,η2‐(η1‐C4H3N2)}2, or bromide ligand to form chelating pyrimidine complex [Pd(PPh3)22‐C4H3N2)]Br. Complex 1 reacted with bidentate ligand, NH4S2CNC4H8, and tridentate ligand, KTp {Tp = tris(pyrazoyl‐1‐yl)borate}, to obtain the η2‐dithiocarbamate η1‐pyrimidine complex [Pd(PPh3)(η1‐C4H3N2)(η2‐S2CNC4H8)], 4 and η2‐Tp η1‐pyrimidine complex [Pd(PPh3)(η1‐C4H3N2)(η2‐Tp)], 5 , respectively. Complexes 4 and 5 are characterized by X‐ray diffraction analyses.  相似文献   

11.
郭鸿旭  王庆华  陈晨  梁敏  陈铃 《中国化学》2008,26(4):640-644
水热合成并通过红外、热重、单晶X-射线衍射表征了一个新颖镍配位阳离子修饰的还原型钼磷酸盐,Ni[Mo6O12(OH)3(PO4)(HPO4)3]2][Ni(H2O)2][Ni(H2O)(bipy)2]4·5H2O。单晶X-射线衍射研究表明,两个{Mo6P4}簇单元通过一个镍离子连接形成一个Ni[Mo6P4]2二聚结构单元,其进一步和其他的镍配位阳离子连接成钼磷酸盐一维链状结构。在H2O2存在下的液-固体系中,使用该化合物催化氧化苯甲醛的探针反应结果表明,该化合物具有较高的催化氧化活性。  相似文献   

12.
A new copper(II) phosphonatobenzenesulfonate incorporating 4,4′‐bipyridine (4,4′‐bipy) as auxiliary ligand has been discovered through systematic high‐throughput (HT) screening of the system Cu(NO3)2·3H2O/H2O3PC6H4SO3H/4,4′‐bipy using different solvents. The hydrothermal synthesis of [Cu(HO3PC6H4SO3)(C10H8N2)]·H2O ( 1 ) was further optimized by screening various copper(II) salts. The crystal structure of 1 was determined by single‐crystal X‐ray diffraction and unveiled the presence of isolated sixfold coordinated Jahn–Teller‐distorted Cu2+ ions. The isolated CuN2O4 octahedra are interconnected by phosphonate and sulfonate groups to form chains along the c‐axis. The organic groups, namely phenyl rings and 4,4′‐bipy molecules cross‐link the chains into a three‐dimensional framework. Water molecules are found in the narrow voids in the structure which are held by weak hydrogen bonds. Upon dehydration, the structure of 1 undergoes a phase transition, which was confirmed by TG measurements and temperature dependent X‐ray powder diffraction. The new structure of 1‐h was refined with Rietveld methods. Detailed inspection of the structure revealed the directional switching of the Jahn–Teller distortion upon de/rehydration. Weak ferro‐/ferrimagnetic interactions were observed by magnetic investigations of 1 , which switch to antiferromagnetic below 3.5 K. Compounds 1 and 1‐h are further characterized by thermogravimetric and elemental analysis as well as IR spectroscopy.  相似文献   

13.
The title complexes, catena‐poly[[aqua(1,10‐phenanthroline‐κ2N,N′)­cobalt(II)]‐μ‐benzene‐1,4‐di­carboxyl­ato‐κ2O1:O4], [Co(C8H4O4)(C12H8N2)(H2O)], (I), and catena‐poly[[[(di‐2‐pyridyl‐κN‐amine)copper(II)]‐μ‐benzene‐1,4‐di­carboxyl­ato‐κ4O1,O1′:O4,O4′] hydrate], [Cu(C8H4O4)(C10H9N3)]·H2O, (II), take the form of zigzag chains, with the 1,4‐benzene­di­carboxyl­ate ion acting as an amphimonodentate ligand in (I) and a bis‐bidentate ligand in (II). The CoII ion in (I) is five‐coordinate and has a distorted trigonal–bipyramidal geometry. The CuII ion in (II) is in a very distorted octahedral 4+2 environment, with the octahedron elongated along the trans O—Cu—O bonds and with a trans O—Cu—O angle of only 137.22 (8)°.  相似文献   

14.
Synthesis of Bridged Binuclear Titanocene Compounds – Crystal Structure of Cl2Ti[(C5H4)(C5H4)(Me)Si–Si(Me)(C5H4)(C5H4)]TiCl2 · PhMe Starting from Cp2(Me)Si–Si(Me)Cp2 1 the complexes X2Ti[(C5H4)(C5H4)(Me)Si–Si(Me)(C5H4)(C5H4)]TiX2 (X = Cl ( 2 a ); X = Me ( 3 )) were synthesized. The compounds were characterized by means of their 1H‐ and 13C‐n.m.r. and MS‐spectra. The crystal structure of 2 a · PhMe was determined.  相似文献   

15.
利用水热法合成了两种过渡金属配合物为模板剂的含水硼酸盐晶体Co(en)3[B4O5(OH)4]Cl·3H2O(1) 和 [Ni(en)3][B5O6(OH)4]2·2H2O (2),并通过元素分析、X射线单晶衍射、红外光谱及热重分析对其进行了表征。化合物1晶体结构的主要特点是在所有组成Co(en)33+, [B4O5(OH)4]2–, Cl– 和 H2O之间通过O–H…O、O–H…Cl、N–H…Cl和N–H…O四种氢键连接形成网状超分子结构。化合物2晶体结构的特点是[B5O6(OH)4]–阴离子通过O–H…O氢键连接形成沿a方向有较大通道的三维超分子骨架,模板剂[Ni(en)3]2+阳离子和结晶水分子填充在通道中。  相似文献   

16.
Two new mixed‐anion zinc(II) and cadmium(II) complexes of 3‐(2‐pyridyl)‐5,6‐diphenyl‐1,2,4‐triazine (PDPT) ligand, [Zn(PDPT)2Cl(ClO4)] and [Cd(PDPT)2(NO3)(ClO4)], have been synthesized and characterized by elemental analysis, IR‐ and 1H NMR spectroscopy. The single crystal X‐ray analyses show that the coordination number in these complexes is six with four N‐donor atoms from two “PDPT” ligand and two of the anionic ligands, ZnN4ClOperchlorate, CdN4OnitrateOperchlorate. Self‐assembly of these compounds in the solid state via ππ‐stacking interactions is discussed.  相似文献   

17.
Rare‐Earth‐Metal Coordination Polymers: Synthesis and Crystal Structures of Five New Adipinates, [M2(Adi)3(H2O)4](AdiH2)(H2O)4 (M = La, Nd), [Er(Adi)(H2O)5]Cl(H2O) and [M(Adi)(H2O)5](NO3)(H2O) (M = Gd, Er) The new rare‐earth compounds [M2(Adi)3(H2O)4](AdiH2)(H2O)4 (M = La ( 1 ), Nd ( 2 )), [Er(Adi)(H2O)5]Cl(H2O) ( 3 ) and [M(Adi)(H2O)5](NO3)(H2O) (M = Gd ( 4 ), Er ( 5 )) were obtained from the reaction of adipinic acid with La(OH)3·xH2O, Nd2O3, ErCl3·6H2O, Gd(NO)3·xH2O and Er2O3, respectively. Their crystal structures were determined by single‐crystal X‐ray diffraction. The coordination polymers [M2(Adi)3(H2O)4](AdiH2)(H2O)4 crystallize in the triclinic space group (no. 2) with a = 875.4(1), b = 1000.4(2), c = 1179.0(2) pm, α = 74.70(1), β = 69.85(1), γ = 86.18(2)° and Z = 1 (crystal data for M = La, ( 1 )). The quasi‐isostructural compounds [Er(Adi)(H2O)5]Cl(H2O) ( 3 ) and [M(Adi)(H2O)5](NO3)(H2O) (M = Gd ( 4 ), Er ( 5 )) crystallize with monoclinic symmetry, space group C2/c (no. 15) with lattice parameters of a = 1231.5(1), b = 1532.6(1), c = 895.4(1) pm, β = 123.44(1)° and Z = 4 (crystal data for ( 3 )). The rare‐earth cations have the coordination numbers 10 ( 1 , 2 ) and 9 ( 3 , 4 and 5 ), respectively. The compounds [M2(Adi)3(H2O)4](AdiH2)(H2O)4 are constructed of infinite chains of edge‐sharig [MO8(H2O)2] polyhedra that are cross‐linked by adipinic acid molecules to form framework structures. In [Er(Adi)(H2O)5]Cl(H2O) ( 3 ) and [M(Adi)(H2O)5](NO3)(H2O) (M = Gd ( 4 ), Er ( 5 )) the central cations are bridged by adipinic acid molecules in a bidentate‐chelating manner to positively charged zigzag chains. Between these the counter ions and crystal water molecules are incorporated.  相似文献   

18.
The reaction of the thiocarbamoyl‐molybdenum complex [Mo(CO)22‐SCNMe2)(PPh3)2Cl] 1 , with EtOCS2K and C4H8NCS2NH4 in dichloromethane at room temperature yielded the seven coordinated ethyldithiocarbonate thiocarbamoyl‐molybdenum complex [Mo(CO)22‐S2COEt)(η2‐SCNMe2)(PPh3)] 2 , and the dithiocarbamate thiocarbamoyl‐molybdenum complex [Mo(CO)22‐S2CNC4H8)(η2‐SCNMe2)(PPh3)] 3 . The geometry around the metal atom of compounds 2 and 3 are capped octahedrons as revealed by X‐ray diffraction analyses. The thiocarbamoyl and ethyldithiocarbonate or pyrrolidinyldithiocarbamate ligands coordinate to the molybdenum metal center through the carbon and sulfur and two sulfur atoms, respectively. Structure parameters, NMR, IR and Mass spectra are in agreement with the crystal chemistry of the two compounds.  相似文献   

19.
Single crystals of [Eu(C4H4O6)(H2O)2](H2O)2 were obtained from the combination of solutions of EuCl2, previously obtained by electrolysis of an aqueous solution of EuCl3, and tartraric acid, neutralized by LiOH. The crystal structure (orthorhombic, P212121, Z = 4, a = 948.9(1), b = 954.6(1), c = 1098.4(1) pm; R(F) = 0.0242 and Rw(F2) = 0.0585 for I > 2σ(I); R(F) = 0.0256 and Rw(F2) = 0.0592 for all data) is isotypic with [Ca(C4H4O6)(H2O)2](H2O)2 and [Sr(C4H4O6)(H2O)2](H2O)2 exhibiting a three‐dimensional structure. The divalent cations (Eu2+, Ca2+, Sr2+) are eight‐coordinate by oxygen atoms that originate from carboxylate and hydroxyl groups of the tartraric dianion and two of the four water molecules.  相似文献   

20.
A tetranuclear CeIV oxo cluster compound containing the Kläui tripodal ligand [Co(η5‐C5H5){P(O)(OEt)2}3]? (LOEt?) has been synthesized and its reactions with H2O2, CO2, NO, and Brønsted acids have been studied. The treatment of [Ce(LOEt)(NO3)3] with Et4NOH in acetonitrile afforded the tetranuclear CeIV oxo cluster [Ce4(LOEt)4O7H2] ( 1 ) containing an adamantane‐like {Ce42‐O)6} core with a μ4‐oxo ligand at the center. The reaction of 1 with H2O2 resulted in the formation of the peroxo cluster [Ce4(LOEt)44‐O)(μ2‐O2)42‐OH)2] ( 2 ). The treatment of 1 with CO2 and NO led to isolation of [Ce(LOEt)2(CO3)] and [Ce(LOEt)(NO3)3], respectively. The protonation of 1 with HCl, ROH (R=2,4,6‐trichlorophenyl), and Ph3SiOH yielded [Ce(LOEt)Cl3] ( 3 ), [Ce(LOEt)(OR)3] ( 4 ), and [Ce(LOEt)(OSiPh3)3] ( 5 ), respectively. The chloride ligands in 3 are labile and can be abstracted by silver(I) salts. The treatment of 3 with AgOTs (OTs?=tosylate) and Ag2O afforded [Ce(LOEt)(OTs)3] ( 6 ) and 1 , respectively. The electrochemistry of the Ce‐LOEt complexes has been studied by using cyclic voltammetry. The crystal structures of complexes 1 – 5 have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号