首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An N‐phenylcarbazole‐containing poly(p‐phenylenevinylene) (PPV), poly[(2‐(4′‐carbazol‐9‐yl‐phenyl)‐5‐octyloxy‐1,4‐phenylenevinylene)‐alt‐(2‐(2′‐ethylhexyloxy)‐5‐methoxy‐1,4‐phenylenevinylene)] (Cz‐PPV), was synthesized, and its optical, electrochemical, and electroluminescent properties were studied. The molecular structures of the key intermediates, the carbazole‐containing boronic ester and the dialdehyde monomer, were crystallographically characterized. The polymer was soluble in common organic solvents and exhibited good thermal stability with a 5% weight loss at temperatures above 420 °C in nitrogen. A cyclic voltammogram showed the oxidation peak potentials of both the pendant carbazole group and the PPV main chain, indicating that the hole‐injection ability of the polymer would be improved by the introduction of the carbazole‐functional group. A single‐layer light‐emitting diode (LED) with a simple configuration of indium tin oxide (ITO)/Cz‐PPV (80 nm)/Ca/Al exhibited a bright yellow emission with a brightness of 1560 cd/m2 at a bias of 11 V and a current density of 565 mA/cm2. A double‐layer LED device with the configuration of ITO/poly(3,4‐ethylenedioxy‐2,5‐thiophene):poly (styrenesulfonic acid) (60 nm)/Cz‐PPV (80 nm)/Ca/Al gave a low turn‐on voltage at 3 V and a maximum brightness of 6600 cd/m2 at a bias of 8 V. The maximum electroluminescent efficiency corresponding to the double‐layer device was 1.15 cd/A, 0.42 lm/W, and 0.5%. The desired electroluminescence results demonstrated that the incorporation of hole‐transporting functional groups into the PPVs was effective for enhancing the electroluminescent performance. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5765–5773, 2005  相似文献   

2.
A novel phenothiazine‐based polymer was synthesized through the Heck reaction of 3,7‐divinyl‐N‐octyl‐phenothiazine with 4,7‐dibromo‐2‐octylbenzotriazole according to the alternating donor–acceptor strategy. The polymer was characterized with 1H NMR, infrared spectroscopy, gel permeation chromatography, cyclic voltammetry, ultraviolet–visible spectroscopy, and fluorescence spectroscopy. With the polymer used as an active layer, three nondoped polymer light‐emitting diodes (PLEDs) with a double‐layer configuration were fabricated by the spin‐coating approach with different thermal annealing processes. The emission maximum in electroluminescent spectra was stabilized at 616 nm. The maximum luminance reached 2432 cd/m2. The coordinate value of Commission International de l'Eclairage 1931 in the double‐layer PLEDs after the thermal treatment was nearly stabilized at (x, y) =(0.62, 0.38). Additionally, the luminous efficiency of device II reached a balanceable state with an increase in the current. Therefore, the polymer had an orange‐red emission with stable chromaticity coordinates under different driving voltages. Finally, a nondoped device with a stable luminous efficiency and chromaticity was obtained. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4867–4878, 2007  相似文献   

3.
We designed a 3,6‐dibromo‐9‐hexyl‐9H‐carbazole derivative with the blue emissive iridium complex bis[2‐(4,6‐difluorophenyl)pyridyl‐N,C2′](picolinato)iridium(III) (FIrpic) linked at the alkyl terminal. Based on this monomer, novel 3,6‐carbazole‐alt‐tetraphenylsilane copolymers grafted with FIrpic were synthesized by palladium‐catalyzed Suzuki coupling reaction, and the content of FIrpic in the polymers could be controlled by feed ratio of the monomers. The polymer films mainly show blue emission from FIrpic, and the emission intensity from the polymer backbones is much weaker compared with the doped analogues, which demonstrates an efficient energy transfer from polymeric host to covalently bonded guest. The phase separation in the polymers was suppressed, which can be identified by atomic force microscopy and designed electroluminescent (EL) devices. EL devices based on the polymers exhibited blue phosphorescence from FIrpic. The luminous efficiency of preliminary devices reached 2.3 cd/A, and the efficiency roll‐off at high current densities was suppressed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1859–1865, 2010  相似文献   

4.
Two novel copoly(p‐phenylene)s ( P1 – P2 ) containing bipolar groups (12.8 and 6.8 mol %, respectively), directly linked hole transporting triphenylamine and electron transporting aromatic 1,2,4‐triazole, were synthesized to enhance electroluminescence (EL) of poly(p‐phenylene vinylene) (PPV) derivatives. The bipolar groups not only enhance thermal stability but also promote electron affinity and hole affinity of the resulting copoly(p‐phenylene)s. Blending the bipolar copoly‐(p‐phenylene)s ( P1 – P2 ) with PPV derivatives ( d6‐PPV ) as an emitting layer effectively improve the emission efficiency of its electroluminescent devices [indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene) (PEDOT):poly(styrenesulfonate) (PSS)/polymer blend/Ca (50 nm)/Al (100 nm)]. The maximum luminance and maximum luminance efficiency were significantly enhanced from 310 cd m?2 and 0.03 cd A?1 ( d6‐PPV ‐based device) to 1450 cd m?2 and 0.20 cd A?1 (blend device with d6‐PPV / P1 = 96/4 containing ~0.5 wt % of bipolar groups), respectively. Our results demonstrate the efficacy of the copoly(p‐phenylene)s with bipolar groups in enhancing EL of PPV derivatives. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

5.
Two new stepladder conjugated polymers, that is, poly(7,7,15,15‐tetraoctyldinaphtho[1,2‐a:1′,2′‐g]‐s‐indacene) (PONSI) and poly(7,7,15,15‐tetra(4‐octylphenyl)dinaphtho[1,2‐a:1′,2′‐g]‐s‐indacene) (PANSI) with alkyl and aryl substituents, respectively, have been synthesized and characterized. In comparison with poly(indenofluorene)s, both polymers have extended conjugation at the direction perpendicular to the polymer backbone because of the introduction of naphthalene moieties. The emission color of the polymers in film state is strongly dependent on the substituents. While PONSI emits at a maximum of 463 nm, PANSI with the same backbone but aryl substituents displays dramatically redshifted emission with a maximum at 494 nm. Both polymers show stable photoluminescence spectra while annealing at 200 °C in inert atmosphere. The PONSI‐based devices with the configuration of ITO/PEDOT:PSS/polymer/Ca/Al turn on at 3.7 V, and emit at a maximum of 461 nm with the CIE coordinates of (0.19, 0.26), a maximum luminance efficiency of 1.40 cd/A, and a maximum brightness of 2036 cd/m2 at 13 V. Meanwhile, the emission color of the devices is independent of driving voltage and keeps unchanged during the continuous operation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4866–4878, 2008  相似文献   

6.
Soluble yellow/orange‐emitting poly[tris(2,5‐dihexyloxy‐1,4‐phenylenevinylene)‐alt‐(1,3‐phenylenevinylene)] derivatives ( 6 ) were synthesized and characterized. These polymers contained oligo(p‐phenylene vinylene) chromophores of equal conjugation length, which were jointed via a common m‐phenylene unit. An optical comparison of 6 and its model compound ( 8 ) at room temperature and low temperatures revealed the similarity in their absorption and fluorescence band structures. The vibronic band structure of 6 was assigned with the aid of the spectroscopic data for 8 at the low temperatures. 6 was electroluminescent and had an emission maximum wavelength at approximately 565 nm. With the device indium tin oxide/PEDOT/ 6 /Ca configuration, the polymer exhibited an external quantum efficiency as high as 0.25%. Simple substitution on m‐phenylene of 6 raised the electroluminescence output by a factor of about 10. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5853–5862, 2004  相似文献   

7.
Summary: An O‐hexyl‐3,5‐bis(terpyridine)phenol ligand has been synthesized and transformed into a hexagonal Zn(II)‐metallomacrocycle by a facile self‐assembly procedure capitalizing on terpyridine‐Zn(II)‐terpyridine connectivity. The structural composition was confirmed by NMR and mass spectral techniques; photo‐ and electroluminescence properties were also investigated. The OLED device shows green electroluminescent emission at 515 nm with a maximum luminance of 39 cd · m−2 and maximum efficiency of 0.16 cd · A−1.

Structure and electroluminescent properties of the metallomacrocycle investigated.  相似文献   


8.
Five new thermally robust electroluminescent fluorene‐based conjugated copolymers, including poly[2,7‐(9,9‐dioctylfluorene)‐co‐4,7‐{5,6‐bis(3,7‐dimethyloctyloxymethyl)‐2,1,3‐(benzothiadiazole)}] ( PFO‐P2C10BT ) were synthesized and used to fabricate the efficient polymer light‐emitting diodes (PLEDs). The glass transition temperatures of the polymers were found to be higher than that of poly(9,9‐dialkylfluorenes) and are in the range 113–165 °C. We fabricated PLEDs in indium‐tin oxide/PEDOT/light‐emitting polymer/cathode configurations using either double‐layer LiF/Al or triple‐layer Alq3/LiF/Al cathode structures. The new copolymers were found to have emission colors that vary from greenish blue (491 nm) to green (543 nm) depending on the copolymer composition. The maximum brightness and luminance efficiency of these PLEDs were found to be up to 5347 cd/m2 and 1.51 cd/A at 10 V, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6762–6769, 2008  相似文献   

9.
A novel blue polycyclic aromatic compound 2,8‐dibromo‐14,14‐dioctyl‐14H‐benzo[b]benzo [5,6] fluoreno[1,2‐d]thiophene 9,9‐dioxide (Br2NFSO) is designed and synthesized through multistep synthesis, and its structure is confirmed by nuclear magnetic resonance. Based on synthesized polycyclic aromatic compound Br2NFSO, a series of twisted blue light‐emitting polyfluorenes derivatives (PNFSOs) are prepared by one‐pot Suzuki polycondensation. Based on the twisted polymer molecular structure resulted from the asymmetric links of 14,14‐dioctyl‐14H‐benzo[b]benzo[5,6]fluoreno[1,2‐d]thiophene 9,9‐dioxide (NFSO) unit in copolymers and better electron transport ability of NFSO than those of the electron‐deficient dibenzothiophene‐S,S‐dioxide counterpart, the resulting polymers exhibit excellent electroluminescent spectra stability in the current densities from 100 to 800 mA cm?2, and show blue‐shifted and narrowed electroluminescent spectra with the Commission Internationale de L′Eclairage (CIE) of (0.16, 0.07) for PNFSO5, compared to poly(9,9‐dioctylfluorene) (PFO) with the CIE of (0.18, 0.18). Moreover, the superior device performance is achieved based on PNFSO5 with the maximum luminous efficiency (LEmax) of 1.96 cd A?1, compared with the LEmax of 0.49 cd A?1 for PFO. The results indicate that the twisted polycyclic aromatic structure design strategy has a great potential to tuning blue emission spectrum and improving EL efficiency of blue light‐emitting polyfluorenes. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 171–182  相似文献   

10.
A novel series of poly(10‐hexyl‐phenothiazine‐S,S‐dioxide‐3,7‐diyl) and poly(9,9′‐dioctyl‐fluorene‐2,7‐diyl‐alt‐10‐hexyl‐3,7‐phenothiazine‐S,S‐dioxide) (PFPTZ‐SS) compounds were synthesized through Ni(0)‐mediated Yamamoto polymerization and Pd(II)‐catalyzed Suzuki polymerization. The synthesized polymers were characterized by 1H NMR spectroscopy and elemental analysis and showed higher glass transition temperatures than that of pristine polyfluorene. In terms of photoluminescence (PL), the PFPTZ‐SS compounds were highly fluorescent with bright blue emissions in the solid state. Light‐emitting devices were fabricated with these polymers in an indium tin oxide/poly(3,4‐ethylene dioxythiophene):poly(styrene sulfonate)/polymer/Ca/Al configuration. The electroluminescence (EL) of the copolymers differed from the PL characteristics: the EL device exhibited a redshifted greenish‐blue emission in contrast to the blue emission observed in the PL. Additionally, this unique phenothiazine‐S,S‐dioxide property, triggered by the introduction of an electron‐deficient SO2 unit into the electron‐rich phenothiazine, gave rise to improvements in the brightness, maximum luminescence intensity, and quantum efficiency of the EL devices fabricated with PFPTZ‐SS. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1236–1246, 2007  相似文献   

11.
A series of novel styrene derived monomers with triphenylamine‐based units, and their polymers have been synthesized and compared with the well‐known structure of polymer of N,N′‐bis(3‐methylphenyl)‐N,N′‐diphenylbenzidine with respect to their hole‐transporting behavior in phosphorescent polymer light‐emitting diodes (PLEDs). A vinyltriphenylamine structure was selected as a basic unit, functionalized at the para positions with the following side groups: diphenylamine, 3‐methylphenyl‐aniline, 1‐ and 2‐naphthylamine, carbazole, and phenothiazine. The polymers are used in PLEDs as host polymers for blend systems with the following device configuration: glass/indium–tin–oxide/PEDOT:PSS/polymer‐blend/CsF/Ca/Ag. In addition to the hole‐transporting host polymer, the polymer blend includes a phosphorescent dopant [Ir(Me‐ppy)3] and an electron‐transporting molecule (2‐(4‐biphenyl)‐5‐(4‐tert‐butylphenyl)‐1,3,4‐oxadiazole). We demonstrate that two polymers are excellent hole‐transporting matrix materials for these blend systems because of their good overall electroluminescent performances and their comparatively high glass transition temperatures. For the carbazole‐substituted polymer (Tg = 246 °C), a luminous efficiency of 35 cd A?1 and a brightness of 6700 cd m?2 at 10 V is accessible. The phenothiazine‐functionalized polymer (Tg = 220 °C) shows nearly the same outstanding PLED behavior. Hence, both these polymers outperform the well‐known polymer of N,N′‐bis(3‐methylphenyl)‐N,N′‐diphenylbenzidine, showing only a luminous efficiency of 7.9 cd A?1 and a brightness of 2500 cd m?2 (10 V). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3417–3430, 2010  相似文献   

12.
A series of multilayer polymeric light‐emitting diodes (PLEDs) containing an electron‐transporting layer (ETL), that is tris(8‐quinolinolato)‐aluminum(III) (Alq) and 2,2′,2″‐(1,3,5‐phenylene)‐tris[1‐phenyl‐1H‐benzimidazole] (TPBI), were fabricated by doping fluorescent oligo(p‐phenylene‐vinylene)s (BIII and BV) and polymer derivatives (PBV) into poly(N‐vinyl carbazole) (PVK). These PLEDs can be optimized by the design of multilayer device configurations (brightness increased 8–15 times by addition of ETL) and possess greenish electroluminescent (EL) spectra peaked about 500–540 nm. A remarkably high brightness of 56,935 cd/m2 with a power efficiency of 3.25 lm/W was obtained in the device of PVK:BVOC8‐OC8 (100:20)/Alq (60 nm/60 nm). It suggests that the emission mechanism (including the conjugated and excimer emissions of BVOC8‐OC8 emitters) originates from both of BVOC8‐OC8 and ETL (Alq and TPBI) by varying the concentration of chromophores and adjusting the thickness of ETL. The concentration effect of the emitters in PVK (i.e. PVK:BVOC8‐OC8 = 100:5, 100:20, and 100:100 wt %) and the influence of the ETL (including its thickness) on the EL characteristics are also reported. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2922–2936, 2006  相似文献   

13.
Carrier balance is essential to obtain efficient emission in polymer light‐emitting diodes (PLEDs). A new polymer 3P5O composed of alternating p‐terphenyl and tetraethylene glycol ether segments is designed and synthesized by the Suzuki coupling reaction and successfully employed as hole‐buffer layer to improve carrier balance. Multilayer PLEDs [ITO/PEDOT:PSS/ 3P5O /SY/LiF/Al], with Super Yellow (SY) as the emitting layer and 3P5O as the hole‐buffer layer, reveal maximum luminance (17,050 cd/m2) and maximum current efficiency (6.6 cd/A) superior to that without the hole‐buffer layer (10,017 cd/m2, 3.0 cd/A). Moreover, it also shows better performance than that using conventional BCP as hole‐blocking layer [ITO/PEDOT:PSS/SY/BCP/LiF/Al (80 nm): 13,639 cd/m2, 4.1 cd/A]. The performance enhancement has been attributed to hole‐buffering characteristics of 3P5O that results in improved carrier recombination ratio and wider carrier recombination region. Current results indicate that the 3P5O is a promising hole‐buffer polymer to enhance the performance of optoelectronic devices. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 785–794  相似文献   

14.
Mesogen‐jacketed liquid crystalline polymers (MJLCPs) with both electron‐transport oxadiazole and hole‐transport thiophene in the side chain were reported for their promising electroluminescent property. Monomers of 2,5‐bis{5‐[(4‐alkoxyphenyl)‐1,3,4‐oxadiazole]thiophen‐2‐yl}styrene (M‐Cm, m is the number of the carbons in the alkoxy groups, m = 8,10) were synthesized and confirmed by 1H‐NMR, mass spectrometry, and elemental analysis. The corresponding polymers were successfully obtained and characterized by thermal analysis, optical spectroscopy, cyclic voltammetry, electroluminescent analysis, polarized light microscopy (PLM), and wide‐angle X‐ray diffraction (WAXD). The polymers exhibited high decomposition temperatures reaching 382 °C and high Tg's reaching 184 °C. The absorption spectra indicated that both the monomers and polymers had little aggregation in film than that in solution, and the absorption spectra of the polymers showed an obvious blue‐shift compared with those of the monomers. Both the monomers and the polymers had blue‐green emission, and the photoluminescence spectra of the polymers in film suggested the formation of excimer or exciplex. The polymers showed lower HOMO energy levels and LUMO energy levels than those of the MJLCPs containing oxadiazole unit reported before. Electroluminescence study with the device configuration of ITO/PEDOT/PVK/polymer/TPBI/Ca/Ag showed maximum brightness and current efficiency of 541 cd/m2 and 0.10 cd/A, which proved that the introduction of directly connected electron‐ and hole‐transport units could greatly improve the EL property of side‐chain conjugated polymers. The phase structures of the polymers were confirmed to be smectic A phase through the results of PLM and WAXD. The annealed samples emitted polarized photoluminescence at room temperature, which indicated potential utility for practical applications in display. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1502–1515, 2010  相似文献   

15.
On the line of a previous work on the spectral properties of some of heteroaryl chalcone, the effect of medium acidity and photoreactivity of 3‐(4‐dimethylamino‐phenyl)‐1‐(2,5‐dimethyl‐thiophen‐3‐yl)‐propenone (DDTP) has been investigated in dimethylformamide and in chloromethane solvents such as methylenechloride, chloroform and carbon tetrachloride. The dye solution (ca. 5×10−4 mol·L−1 in DMF) gives a good laser emission in the range 470–560 nm with emission maximum at 515 nm upon pumping by nitrogen laser (λex=337.1 nm). The laser parameters such as gain coefficient (α), emission cross section (δe) and half life energy (E1/2) at maximum laser emission are also determined.  相似文献   

16.
It is challenging to realize the near‐infrared (NIR) emission with large brightness and sharp spectra from the conjugated polymers. In this study, we demonstrate the strategy for receiving strong and pure NIR emission from polymeric materials using organoboron complexes and the modification after polymerization. A series of NIR emissive conjugated polymers with boron di(iso)indomethenes (BODINs) and fluorene or bithiophene were synthesized by Suzuki–Miyaura coupling reaction. The obtained polymers exhibited high emissions in the range from deep‐red to NIR region (quantum yields: ?PL = 0.40–0.79, full width at half maximum height: Δλ1/2 = 660–940 cm?1, emission maxima: λPL = 686–714 nm). Next, the demethylation of the BODIN‐based polymer with o‐methoxyphenyl groups was carried out. The transformation of the polymer structure quantitatively proceeded via efficient intramolecular crosslinking through the intermediary of the boron atom. Finally, the resulting polymer showed both drastically larger red‐shifted and sharper photoluminescence spectrum than that of the parent polymer with deep‐red emission (?PL = 0.37, Δλ1/2 = 460 cm?1, λPL = 758 nm). © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

17.
Two new orange red light‐emitting hyperbranched and linear polymers, poly(pyridine phenylene)s P1 and P2, were prepared by the Heck coupling reaction. In particular, an A2 + B3 approach was developed to synthesize conjugated hyperbranched polymer P2 via one‐pot polycondensation. The polymers were characterized by NMR, Fourier transform infrared, ultraviolet–visible, and elemental analysis. They showed excellent solubility in common solvents such as tetrahydrofuran, CH2Cl2, CHCl3, and N,N‐dimethylformamide and had high molecular weights (up to 6.1 × 105 and 5.8 × 105). Cyclic voltammetry studies revealed that P2 had a low‐lying lowest unoccupied molecular orbital energy level of ?3.22 eV and a highest occupied molecular orbital energy level of ?5.43 eV. The thin film of P2 emitted strong orange‐red photoluminescence at 595 nm. A double‐layer light‐emitting diode fabricated with the configuration of indium tin oxide/P2/tris(8‐hydroxy‐quinoline)aluminum/Al emitted orange‐red light at 599 nm, with a brightness of 662 cd/m2 at 7 V and a turn‐on voltage of 4.0 V; its external quantum efficiency was calculated to be 0.19% at 130.61 mA/cm2. This indicated that this new electroluminescent polymer (P2) based on 3,5‐dicyano‐2,4,6‐tristyrylpyridine could possibly be used as an orange‐red emitter in polymer light‐emitting displays. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 493–504, 2005  相似文献   

18.
Novel conjugated polyfluorene copolymers, poly[9,9‐dihexylfluorene‐2,7‐diyl‐co‐(2,5‐bis(4′‐diphenylaminostyryl)‐phenylene‐1,4‐diyl)]s (PGs), have been synthesized by nickel(0)‐mediated polymerization from 2,7‐dibromo‐9,9‐dihexylfluorene and 1,4′‐dibromo‐2,5‐bis(4‐diphenylaminostyryl)benzene with various molar ratios of the monomers. Because of the incorporation of triphenylamine (TPA) moieties, PGs exhibit much higher HOMO levels than the corresponding polyfluorene homopolymers and are able to facilitate hole injection into the polymer layer from the anode electrode in light‐emitting diodes. Conventional polymeric light‐emitting devices with the configuration ITO/PEDOT:PSS/polymer/Ca/Al have been fabricated. A light‐emitting device produced with one of the PG copolymers (PG10) as the emitting layer exhibited a voltage‐independent and stable bluish‐green emission with color coordinates of (0.22, 0.42) at 5 V. The maximum brightness and current efficiency of the PG10 device were 3370 cd/m2 (at 9.6 V) and 0.6 cd/A, respectively. To realize a white polymeric light‐emitting diode, PG10 as the host material was blended with 1.0 wt % of a red‐light‐emitting polymer, poly[9,9‐dioctylfluorene‐2,7‐diyl‐alt‐2,5‐bis(2‐thienyl‐2‐cyanovinyl)‐1‐(2′‐ethylhexyloxy)‐4‐methoxybenzene‐5′,5′‐diyl] (PFR4‐S), and poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene] (MEH‐PPV). The device based on PG10:PFR4‐S showed an almost perfect pure white electroluminescence emission, with Commission Internationale de l'Eclairage (CIE) coordinates of (0.33, 0.36) at 8 V; for the PG10:MEH‐PPV device, the CIE coordinates at this voltage were (0.30, 0.40) with a maximum brightness of 1930 cd/m2. Moreover, the white‐light emission from the PG10:PFR4‐S device was stable even at different driving voltages and had CIE coordinates of (0.34, 0.36) at 6 V and (0.31, 0.35) at 10 V. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1199–1209, 2007  相似文献   

19.
Three diethylgallium complexes of type Et2GaL [L = N‐(4‐methoxy) benzylidenethiobenzahydrazonato ( 1 ), N‐(4‐N,N‐dimethylamino)benzy lidenethiobenzahydrazonato ( 2 ) and N‐(9‐anthryl)methylenethio benzahydrazonato ( 3 )] were synthesized by the reaction of triethylgallium with appropriate N‐arylmethylenethiobenzahydrazones. The compounds obtained were characterized by elemental analysis, 1H NMR, IR and mass spectroscopy, respectively. Monolayer light‐emitting diodes based on the diethyl[N‐arylmethylenethio benzahydrazonato]gallium doped poly(vinylcarbazole) were fabricated using a spin coating method. The photoluminescent and electroluminescent emission spectra of 1 and 3 were measured (429 and 479 nm for 1 and 3 , respectively). The electroluminescent properties of 1 and 3 were also studied. The electroluminscence bands are located in the blue/green region (465 and 510 nm for complexes 1 and 3 , respectively). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
An indenofluorene‐based copolymer containing blue‐, green‐, and red light‐emitting moieties was synthesized by Suzuki polymerization and examined for application in white organic light‐emitting diodes (WOLEDs). Tetraoctylindenofluorene (IF), 2,1,3‐benzothiadiazole (BT), and 4,7‐bis(2‐thienyl)‐2,1,3‐benzothiadiazole (DBT) derivatives were used as the blue‐, green‐, and red‐light emitting structures, respectively. The number‐average molecular weight of the polymer was determined to be 25,900 g/mol with a polydispersity index of 2.02. The polymer was thermally stable (Td = ~398 °C) and quite soluble in common organic solvents, forming an optical‐quality film by spin casting. The EL characteristics were fine‐tuned from the single copolymer through incomplete fluorescence energy transfer by adjusting the composition of the red/green/blue units in the copolymer. The EL device using the indenofluorene‐based copolymer containing 0.01 mol % BT and 0.02 mol % DBT units ( PIF‐BT01‐DBT02 ) showed a maximum brightness of 4088 cd/m2 at 8 V and a maximum current efficiency of 0.36 cd/A with Commission Internationale de L'Eclairage (CIE) coordinates of (0.34, 0.32). The EL emission of PIF‐BT01‐DBT02 was stable with respect to changes in voltage. The color emitted was dependent on the thickness of the active polymer layer; layer (~60 nm) too thin was unsuitable for realizing WOLED via energy transfer. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3467–3479, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号