首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyaniline (PANI) doped with different dopants (HCl, dodecyl benzene sulfonic acid, (+)‐Camphor‐10 sulfonic acid, dinonyl naphthalene disulfonic acid) was synthesized by chemical oxidation method. The FTIR studies indicated that the back bone structure of doped PANI was similar. Thermal stability was evaluated in nitrogen atmosphere by dynamic thermogravimetry and PANI‐HCl sample showed minimum weight loss below 400°C. The electrical conductivity of PANI was not affected by the structure of dopants. The microwave absorption studies of several polymers blends containing PANI‐HCl and/or carbon black were also carried out by using wave guide technique.  相似文献   

2.
Camphor‐10‐sulfonic acid (HCSA) doped polyaniline (PANI)/poly(ethylene oxide) (PEO) composite nanofibers with different compositions (12 to 52 wt.% of PANI) were synthesized by an electrospinning method and their properties including optical, electrical and sensing were systematically investigated. FT‐IR shows that an increase of IR absorbance ratios of aromatic C? C stretching vibration of benzenoid rings of PANI to C? O? C symmetric vibrational modes of PEO confirmed that the PANI content in nanofiber mats increased proportionally with increase in PANI content in electrospinning solution. The band gap of PANI was determined to be 2.5 eV using UV‐Vis spectroscopy. The electrical conductivities of the nanofibers increased with an increase in the PANI content in the nanofibers. Additionally, the sensitivity toward NH3 increased as the PANI content increased, but branched nanofibers reduced sensing response. The humidity sensitivity changed from positive to negative as the PANI content increased. The electron transport mechanism was studied by measuring the temperature dependence electrical resistivity. The negative temperature coefficient of resistance revealed a semiconducting behavior for the PANI/PEO nanofibers. The activation energy, calculated by Arrhenius plot, increased as the PANI content decreased. The power law indicated that electrons were being transported in a three dimensional matrix, and the longer hopping distance required more hopping energy for electron transport.  相似文献   

3.
任振波  应宗荣  刘信东  万慧 《应用化学》2016,33(12):1448-1454
分别在盐酸和樟脑磺酸-盐酸混酸溶液中,在蒙脱土基新型氮掺杂多孔碳表面原位聚合苯胺,以制备氮掺杂多孔碳@聚苯胺复合电极材料,采用红外光谱(FTIR)、X射线衍射(XRD)和扫描电子显微镜(SEM)表征复合材料的组成和形貌。 盐酸掺杂的复合材料呈短棒状形貌,樟脑磺酸-盐酸掺杂材料形貌呈颗粒状及交联片状,樟脑磺酸-盐酸掺杂的结晶性能优于盐酸掺杂。 电化学测试结果表明,樟脑磺酸-盐酸掺杂的复合材料在0.5 A/g电流密度下的质量比电容为412.5 F/g,比盐酸掺杂的(332.4 F/g)高24.1%,等效串联电阻(Rs)和电荷迁移电阻(Rct)小;但盐酸掺杂的复合材料在大电流下电容保持率为81.4%,高于混酸掺杂的58.4%。  相似文献   

4.
The conduction behavior at high current density at room temperature and above of polyaniline (PANI) films doped with HCl and camphor sulfonic acid (HCSA), respectively, is reported. It is found that the current density deviates strongly from the linear relation with the electric field in high current density region, and a saturation of the current density is observed. The maximum current density Jm seems to be proportional to the conductivity of the sample and hence, for PANI doped with HCl, Jm is about 200 A/cm2, whereas for HCSA doped samples, Jm can reach more than 1,200 A/cm2. The saturation of current density is interpreted as being caused by space charge accumulation at the insulating barrier regions and a dedoping effect in the conduction domains due to the detraping of the ions under high fields. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2845–2850, 1999  相似文献   

5.
The relationships of the structure and electrical properties of anisotropic HCl‐doped polyaniline (PANI) films cast from N,N′‐dimethylpropylene urea (DMPU) solutions and stretched to different draw ratios were studied. The anisotropic structure of the stretched PANI films was examined by X‐ray diffraction, near‐infrared wave‐guide coupling, and polarized infrared measurements. The PANI emeraldine base (EB) films cast from DMPU solutions had a single‐phase noncrystalline structure, and stretching of the films did not cause crystallization to occur. The transition moment angles of two weakly absorbing infrared bands were determined, and the Hermans' orientation functions for the PANI EB films were calculated. The PANI films were then doped with HCl, and the electrical properties were determined by impedance spectroscopy. With a specially designed test fixture, the in‐plane and through‐plane impedance was obtained. The conductivity along the stretch direction increased with orientation. The in‐plane conductivity was significantly higher than the through‐plane conductivity. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 823–841, 2003  相似文献   

6.
Doped polyaniline (PANI) was synthesized by an “in situ doping polymerization” method in the presence of different sulfonic acids, such as methanesulfonic acid (MSA), p‐methylbenzene sulfonic acid (MBSA), β‐naphthalenesulfonic acid (β‐NSA), α‐naphthalenesulfonic acid (α‐NSA), 1,5‐naphthalenedisulfonic acid (1,5‐NSA), and 2,4‐dinitronaphol‐7‐sulfonate acid (NONSA). Morphology, solubility in m‐cresol, and electrical properties of the doped PANI were measured with the variation of the molecular structure of the selected sulfonic acids. Granular morphology was obtained when the sulfonic acids without a naphthalene ring, such as MSA and MBSA, were used. Regular tubular morphology was obtained only when β‐NSA was used. The tubular morphology can be modified by changing the substitutes, the number, and location of sulfo‐group(SOH) on the naphthalene ring. These results indicated that naphthalene ring in the selected sulfonic acids plays an important role in forming the tubular morphology of the doped PANI by the “in situ doping polymerization” method. All resulting PANI salts were soluble in m‐cresol, with the solubility depending on the molecular structure of the selected dopants. Room‐temperature conductivity for the doped PANI ranges from 10−1 to 100S/cm. Temperature dependence of conductivity shows a semiconductor behavior, and it can be expressed by one dimenson Variable Range Hopping (VRH) model. 1 © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1277–1284, 1999  相似文献   

7.
The synthesis of nanostructured polyaniline (PANI) with different morphologies by simple alkali‐guided template‐free method followed by doping them with vanadium has been described. The synthesized polyaniline nanoparticles have been well characterized by various techniques. Further, the catalytic activity of the undoped and doped PANI nanostructures for selective oxidation of sulfides to sulfoxides in water has been studied. It was observed that the special morphology of nanostructures plays an important role in enhancement of catalytic activity. Vanadium‐doped PANI nanotubes and nanorods showed higher activity and selectivity than nanospheres. The catalyst has been reused for five consecutive cycles with consistent activity. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
The emeraldine base form of polyaniline (PANI) can be doped by a photo-induceddoping method. In this method a copolymer of vinylidene chloride and methyl acrylate(VCMAC) was used as photo acid generator which can release proton when it is exposedto ultraviolet light (λ= 254 nm). The structure of PANI-VCMAC system before and afterirradiation was characterized by elemental analysis, IR, XPS, and SEM images. Resultsobtained indicate that the photo-induced doping characteristics, such as doping positionand type of charge carriers, are similar to that of PANI doped with HCl. The poor room-temperature conductivity (~10~(-5)S/cm) of PANI-VCMAC system after irradiation maybe due to low doping degree (~pH= 3) and the difference in morphology as compared withPANI-HCl film.  相似文献   

9.
A hybrid approach has been adopted by using a combination of colloidal graphite (CG) as a conducting filler, 5‐lithium sulfoisophthalic (LiSIPA) acid as a dopant, and polyaniline (PANI) as a matrix to prepare LiSIPA doped PANI–CG composites. The thermal stability (~300°C) and electrical conductivity (67.4 S/cm at 17.4% CG content) have been improved significantly as compared to PANI doped with conventional inorganic dopants like HCl or H2SO4 (130–150°C). The maximum shielding effectiveness value was found to be ?39.7 dB. X‐ray diffraction and infrared spectroscopy showed a systematic shifting of the characteristic peaks and bands with increase in the amount of CG, which indicates significant interaction exists between CG and PANI. The UV–Vis spectra showed the characteristic bands of PANI, with a shift to shorter wavelength with increase in the CG content. The interaction mechanism between doped PANI and CG in the resultant composites has been proposed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents our results on the successful fabrication of HCl‐doped polyaniline (PANI)/ZnO nanocomposites via an electrochemical synthesis route. Different weight percents of ZnO nanoparticles were uniformly dispersed in the PANI matrix. The interaction between the dispersed ZnO nanoparticle and PANI was studied using X‐ray diffraction, ultraviolet–visible absorption spectroscopy, photoluminescence (PL) spectroscopy, X‐ray photoelectron spectroscopy, atomic force microscopy, thermogravimetry, and transmission electron microscopy. It is shown that the doping state of the PANI/ZnO nanocomposite is highly improved as compared to that of PANI. The dispersed PANI/ZnO nanocomposites exhibit enhanced PL behavior and thermal stability.  相似文献   

11.
Q. Huang  G. Chen  J. Liu 《先进技术聚合物》2014,25(12):1391-1395
Polyanilines (PANIs) doped with Zn2+ and Cu2+ were synthesized by H2O2 oxidative polymerization of aniline in the presence of corresponding metal chloride in solution. The products were characterized by elemental analysis, UV‐Vis‐NIR, FTIR and Raman spectroscopies. Scanning electron micrograph was employed to examine the morphology of PANIs fabricated in the presence of different transition metals. Experimental results showed that transition metal ions had been successfully incorporated into the polymer, and there was a strong interaction between the transition metal ions and the PANI chains. The electrical conductivity of PANI doped with Zn2+ and Cu2+ is 0.37 and 0.21 S/cm, respectively, which is higher than that of HCl doping PANI corresponding to 0.052 S/cm. The cyclic voltammetric study has indicated that incorporation of metal ions in PANI backbone results in increasing of specific capacitance compared to that of HCl doping PANI. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
采用第一性原理计算考察了阴离子(硼、碳、氮、氟、磷、硫)掺杂的二氧化钛(包括锐钛矿相和金红石相)。芯位移计算结果表明,在氮掺杂的TiO2中,间隙掺杂类型的N的1s能级在XPS能谱上峰的位置要比替代掺杂的能级高,类似的结果也在硼、碳、磷和硫掺杂的TiO2上发现。然而对于F掺杂的TiO2,替代掺杂的峰位置比间隙掺杂的高,且与TiO2的晶相无关。还对阴离子掺杂的TiO2进行了热力学研究。结果表明,替换掺杂的形成焓高于间隙掺杂的,因此替代掺杂的TiO2的制备需要苛刻的条件,而间隙掺杂TiO2的制备只需温和的湿化学条件。  相似文献   

13.
The composite of polyaniline (PANI) and multiwall carbon nanotube carboxylated through acid treatment (c‐MWCNT) was synthesized by chemical oxidative polymerization in an inverse emulsion system. The resultant composites were compared with products from aqueous emulsion polymerization to observe the improvements in electrical conductivity, structural properties, and thermal stability obtained by this synthetic method. Prior to the inverse emulsion polymerization, MWCNT was treated with a strong acid mixture to be functionalized with carboxylic acid groups. Carboxylic acid groups on surfaces induced selective dispersibility between polar and nonpolar solvents because of the increase of hydrophilicity. As the content of c‐MWCNT was increased, the electrical conductivity was increased by a charge transport function from the intrinsic electrical conductivity of MWCNT and the formation of a highly ordered dense structure of PANI molecules on the surface of c‐MWCNT. The images observed with electron spectroscopy showed the capping of c‐MWCNT with PANI. The growth of additional ordered structures of PANI/c‐MWCNT composite, which was observed through wide‐angle X‐ray diffraction patterns, supported the capping by PANI. It was observed that the doping of the composite had a significant relationship with the concentration of dodecylbenzenesulfonic acid (DBSA). The thermal stability of PANI composite was improved by the addition of c‐MWCNT; this was thought to be related with structure ordering by inverse emulsion polymerization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2255–2266, 2008  相似文献   

14.
We describe the preparation of polyaniline (PANI‐EB) by aniline oxidation with KIO3 and the purification of the resulting dedoped polymer by an acetone extraction step to eliminate undesired by‐products from polyaniline, which could generate some safety concerns in the application and use of PANI. Excellent homogeneous and electrically conducting composite films can be prepared from chloroform solutions of purified PANI doped with camphorsulfonic acid in presence of cis‐1,4‐polybutadiene as the film‐forming agent. These films have been characterized by FT‐IR and UV‐VIS‐NIR spectroscopy. A method to synthesisze PANI directly doped with dodecylbenzenesulfonic acid (DBSA) is also reported. DBSA‐doped‐PANI was then used to prepare composites with polyphenylacetylene (PPA) by growing homogeneous films from chloroform solution. These films were conductive and were studied by FT‐IR and UV‐VIS‐NIR spectroscopy. In view of the application of these composites as gas sensors or in “electronic noses”, a short discussion is presented about the criteria used in the selection of the chemical nature of the host polymer where doped PANI is included to confer electrical conductivity. The interaction between the molecules to be detected and the polymeric sensing surface is discussed in terms of physisorption, chemisorption and charge‐transfer‐complex formation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
Molecular recognition plays a significant role in the counterion-induced processibility, morphological features, and physical properties of doped polyaniline (PANI). The interaction of the counterion and solvent controls the chain conformation and, as a result, the formation of extended and localized electronic states; hence, it holds the key for tuning a wide range of electrical and optical properties of doped PANI. The combined effects of counterion, solvent, and processing conditions tune the metal-insulator transition, temperature dependence of conductivity, magnetoresistance, and so forth in doped PANI. The typical examples are shown in the case of PANI doped by camphor sulfonic acid, 2-acrylamido-2-methyl-1-propane sulfonic acid, and dodecylbenzoyl sulfonic acid.  相似文献   

16.
使用密度泛函理论(DFT)-B3LYP/6-31G*方法研究了B、N、Si、P和Co在C50和C70中的掺杂能和电子结构, 并基于曲率理论和电子结构探讨了掺杂富勒烯的结构稳定性. 计算结果表明, 掺杂能随着原子曲率的增大而减小, 随着掺杂物种原子半径的增大而增大, B、N、P和Co的掺杂有利于C50结构的稳定, 而B和N的掺杂不利于C70结构的稳定; 除了用于反映原子活性的曲率主要决定掺杂反应性, 各不等价碳原子在C50和C70的最高占据分子轨道(HOMO)中所占成分对掺杂能的影响也很大, 且其成分越大越有利于掺杂. 此外, 掺杂原子得失电子情况与其电负性有关. 本工作将为富勒烯结构稳定性的研究提供理论依据.  相似文献   

17.
Polyaniline (PANI) and silver doped polyaniline (Ag/PANI) thin films were deposited on stainless steel substrates by a dip coating technique. To study the effect of doping concentration of Ag on the specific capacitance of PANI the concentration of Ag was varied from 0.3 to 1.2 weight percent. Fourier transform-infrared and Fourier transform-Raman spectroscopy, and energy dispersion X-ray techniques were used for the phase identification and determination of the doping content in the PANI films, respectively. The surface morphology of the films was examined by Field Emission Scanning Electron Microscopy, which revealed a nanofiber like structure for PANI and nanofibers with bright spots of Ag particles for the Ag/PANI films. There was decrease in the room temperature electrical resistivity of the Ag/PANI films of the order of 10(2) with increasing Ag concentration. The supercapacitive behavior of the electrodes was tested in a three electrode system using 1.0 M H(2)SO(4) electrolyte. The specific capacitance increased from 285 F g(-1) (for PANI) to 512 F g(-1) for Ag/PANI at 0.9 weight percent doping of Ag, owing to the synergic effect of PANI and silver nanoparticles. This work demonstrates a simple strategy of improving the specific capacitance of polymer electrodes and may also be easily adopted for other dopants.  相似文献   

18.
N‐doped graphene has become an important support for Pd in both hydrogen storage and catalytic reactions. The molecular orbitals of carbon materials (including graphene, fullerene, and small carbon clusters) and those of the supported Pd species will hybrid much stronger as N dopants are introduced, owing to the increased electrostatic attraction at the interface. This enhances the carbon substrates′ catching force for the supported Pd, preventing its leaching and aggregation in many practical applications. The better dispersion and stabilization of Pd nanoparticles, which are induced by various carbon supports with N‐doping, are pleasing to us and could increase their efficiency and facilitate their recycling during various reaction processes in several fields.  相似文献   

19.
利用紫外光作为辅助条件,在反胶束体系中采用一步双原位法合成了硝酸(HNO3)、对甲基苯磺酸(TSA)和5-磺基水杨酸(SSA)掺杂的银/聚苯胺(Ag/PANI)纳米复合材料.通过对复合材料进行红外光谱(FTIR)、紫外光谱(UV-Vis)、扫描电镜(SEM)、X射线衍射(XRD)和导电性能的测试,研究了不同质子酸对Ag/PANI纳米复合材料结构、形貌和导电性能的影响.测试结果表明,3种酸掺杂制备的Ag/PANI纳米复合材料均为聚苯胺包覆银粒子的核-壳结构.不同的质子酸掺杂会对Ag/PANI纳米复合材料的电性能有重要影响.在3种酸掺杂的复合材料中,TSA掺杂的复合材料的电导率最佳,为215.14 S·cm-1.  相似文献   

20.
Charge doping is an effective way to induce the metal–insulator transition (MIT) in correlated materials for many important utilizations, which is however practically limited by problem of low stability. An electron–proton co‐doping mechanism is used to achieve pronounced phase modulation of monoclinic vanadium dioxide (VO2) at room temperature. Using l ‐ascorbic acid (AA) solution to treat VO2, the ionized AA? species donate electrons to the adsorbed VO2 surface. Charges then electrostatically attract surrounding protons to penetrate, and eventually results in stable hydrogen‐doped metallic VO2. The variations of electronic structures, especially the electron occupancy of V 3d/O 2p hybrid orbitals, were examined by synchrotron characterizations and first‐principle theoretical simulations. The adsorbed molecules protect hydrogen dopants from escaping out of lattice and thereby stabilize the metallic phase for VO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号