首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work deals with the synthesis and cationic ring‐opening polymerization behavior of a novel five‐membered cyclic thiocarbonate bearing a spiro‐linked adamantane moiety, tricyclo[3.3.1.13,7]decane‐2‐spiro‐4′‐(1′,3′‐dioxolane‐2′‐thione) ( TC2 ). The cationic ring‐opening polymerization of TC2 did not proceed with trifluoromethanesulfonic acid, methyl trifluoromethanesulfonate, triethyloxonium tetrafluoroborate (Et3OBF4), boron trifluoride etherate (BF3OEt2), titanium tetrachloride, or methyl iodide as the initiator, presumably because of the steric hindrance of the adamantane moiety. However, the cationic ring‐opening copolymerization of TC2 with five‐ or six‐membered cyclic thiocarbonates, that is, 1,3‐dioxolane‐2‐thione, 1,3‐dioxane‐2‐thione, 5‐methyl‐1,3‐dioxane‐2‐thione, or 5,5‐dimethyl‐1,3‐dioxane‐2‐thione, initiated by BF3OEt2 or Et3OBF4, proceeded to afford the corresponding copolymer via a selective ring‐opening direction. The increase in the feed ratio of TC2 in the copolymerization increased the unit ratio derived from TC2 in the copolymer; however, the molecular weight of the copolymer decreased. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 699–707, 2003  相似文献   

2.
This work deals with the cationic ring‐opening polymerization of the ester‐substituted cyclic carbonates 5‐methyl‐5‐benzoyloxymethyl‐1,3‐dioxan‐2‐one ( CC1 ) and 4‐benzoyloxymethyl‐1,3‐dioxan‐2‐one ( CC4 ). The polymerization was carried out with trifluoromethanesulfonic acid, methyl trifluoromethanesulfonate, boron trifluoride etherate, or methyl iodide as the initiator. The reactivity of CC1 and CC4 was higher than that of 5,5‐dimethyl‐1,3‐dioxan‐2‐one, which had no ester moiety. These results suggest that this ring‐opening polymerization was accelerated by the intramolecular ester group. CC1 showed a higher polymerizability than CC4 , affording a polymer with a higher molecular weight. Additionally, using methyl iodide as the initiator was effective for increasing the molecular weight of the obtained polycarbonate and decreasing decarboxylation. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1305–1317, 2001  相似文献   

3.
Cationic ring‐opening copolymerizations of various cyclic ether compounds with volume expanding monomers bearing norbornene backbones [norbornene‐spiro orthocarbonate (N‐SOC) and norbornene‐cyclic carbonate (N‐CC)] were carried out in the presence of a thermally latent initiator 1 . The 10% weight loss decomposition temperatures (Td10) and the volume changes on the copolymerizations were measured for these resultant products. In the comparison between copolymerizations of bifunctional epoxide 2 with N‐SOC and with N‐CC, it was found that N‐CC served as a more useful volume controllable comonomer than N‐SOC. The copolymerizations with N‐CC yielded the products with a decrease in the volume change (volume shrinkage) and with an increase in the monomer feed ratio of N‐CC; Td10 was relatively similar to the homopolymer of epoxide 2 and was observed except when the proportion of N‐CC was more than 20% in the monomer feed ratio of N‐CC. In contrast, similar copolymerizations with N‐SOC did not exhibit such tendencies, probably because of the low efficiency of the copolymerization derived from the low miscibility of N‐SOC for the epoxide. The other copolymerization systems of other bi‐ and monocyclic ether compounds ( 3 – 6 and phenyl glycidyl ether) with N‐CC also indicated an almost similar tendency toward that of the copolymerization with epoxide 2 . © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5113–5120, 2004  相似文献   

4.
The cationic ring‐opening polymerization of a seven‐membered cyclic monothiocarbonate, 1,3‐dioxepan‐2‐thione, produced a soluble polymer through the selective isomerization of thiocarbonyl to a carbonyl group {? [SC(C?O)O(CH2)4]n? }. The molecular weights of the polymer could be controlled by the feed ratio of the monomer to the initiators or the conversion of the monomer during the polymerization, although some termination reactions occurred after the complete consumption of the monomer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1014–1018, 2005  相似文献   

5.
Cationic copolymerization of n‐butyl glycidyl ether (BGE) and 3‐isochromanone (ICM) was investigated using trifluoromethanesulfonic acid (TfOH) as an initiator at 100 °C. In the copolymerization, the reactive site of ICM with the propagating cation was completely different from that in its homopolymerization: in the former, the propagating cation reacted with the carbonyl oxygen of ICM, while in the latter, the propagating cation reacted with the aromatic ring of ICM. In spite of the potential of ICM to undergo the homopolymerization, in the present copolymerization, ICM was consumed smoothly only in the presence of epoxide. As a result, the copolymerization proceeded in a statistic manner to afford the corresponding copolymer bearing ICM‐derived ester linkages distributed in the main chain. Cationic copolymerization of bisphenol A‐diglycidyl ether and ICM was also performed to synthesize the corresponding networked polymer. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4213–4220  相似文献   

6.
Anionic ring‐opening polymerizations of methyl 4,6‐O‐benzylidene‐2,3‐O‐carbonyl‐α‐D ‐glucopyranoside (MBCG) were investigated using various anionic polymerization initiators. Polymerizations of the cyclic carbonate readily proceeded by using highly active initiators such as n‐butyllithium, lithium tert‐butoxide, sodium tert‐butoxide, potassium tert‐butoxide, and 1,8‐diazabicyclo[5.4.0]undec‐7‐ene, whereas it did not proceed by using N,N‐dimethyl‐4‐aminopyridine and pyridine as initiators. In a polymerization of MBCG (1.0 M), 99% of MBCG was converted within 30 s to give the corresponding polymer with number‐averaged molecular weight (Mn) of 16,000. However, the Mn of the polymer decreased to 7500 when the polymerization time was prolonged to 24 h. It is because a backbiting reaction might occur under the polymerization conditions. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

7.
The cationic ring‐opening polymerization of a five‐membered thiourethane [3‐benzyl‐1,3‐oxazolidine‐2‐thione (BOT)] with boron trifluoride etherate afforded the corresponding polythiourethane with a narrow molecular weight distribution in an excellent yield. The molecular weight of the polymers could be controlled by the feed ratio of the monomer to the initiator. A kinetic study of the polymerization revealed that the polymerization rate of BOT (1.3 × 10?2 L mol?1 min?1) was two times larger than that of the six‐membered thiourethane [3‐benzyltetrahydro‐1,3‐oxazolidine‐2‐thione (BTOT); 6.8 × 10?3 L mol?1 min?1], and the monomer conversion obeyed the first‐order kinetic equation. These observations, along with the successful results in the two‐stage polymerization, supported the idea that this polymerization proceeded in a controlled manner. Block copolymerizations of BOT with BTOT were also carried out to afford the corresponding di‐ and triblock copolymers with narrow molecular weight distributions. The order of the 5% weight loss temperatures was as follows: poly(3‐benzyltetrahydro‐1,3‐oxazolidine‐2‐thione) [poly(BTOT)] > poly(BTOT54b‐BOT46) > poly(3‐benzyl‐1,3‐oxazolidine‐2‐thione) [poly(BOT)]. This indicated that an increase in the BTOT unit content raised the decomposition temperature. The order of the refractive indices was poly(BOT) > poly(BTOT54b‐BOT46) > poly(BTOT54b‐BOT46b‐BTOT50) > poly(BTOT); this was in accord with the order of the sulfur content in the polymer chain. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4795–4803, 2006  相似文献   

8.
Pseudo block and triblock copolymers were synthesized by the cationic ring‐opening copolymerization of 1,5,7,11‐tetraoxaspiro[5.5]undecane (SOC1) with trimethylene oxide (OX) via one‐shot and two‐shot procedures, respectively. When SOC1 and OX were copolymerized cationically with boron trifluoride etherate (BF3OEt2) as an initiator in CH2Cl2 at 25 °C, OX was consumed faster than SOC1. SOC1 was polymerized from the OX‐rich gradient copolymer produced in the initial stage of the copolymerization to afford the corresponding pseudo block copolymer, poly [(OX‐grad‐SOC1)‐b‐SOC1]. We also succeeded in the synthesis of a pseudo triblock copolymer by the addition of OX during the course of the polymerization of SOC1 before its complete consumption, which provided the corresponding pseudo triblock copolymer, poly[SOC1‐b‐(OX‐grad‐SOC1)‐b‐SOC1]. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3233–3241, 2006  相似文献   

9.
10.
This work deals with the cationic ring‐opening polymerization of cyclic thiocarbonates with a norbornene or norbornane moiety, that is, 5,5‐(bicyclo[2.2.1]hept‐2‐ene‐5,5‐ylidene)‐1,3‐dioxane‐2‐thione ( TC1 ) or 5,5‐(bicyclo[2.2.1]heptane‐5,5‐ylidene)‐1,3‐dioxane‐2‐thione ( TC2 ), respectively. The reaction of TC1 initiated by trifluoromethanesulfonic acid (TfOH), methyl trifluoromethanesulfonate (TfOMe), boron trifluoride etherate (BF3OEt2), or triethyloxonium tetrafluoroborate (Et3OBF4) afforded unidentified products; however, TC1 underwent cationic ring‐opening polymerization with methyl iodide as an initiator to afford polythiocarbonate because the propagating end was stabilized by the covalent‐bonding property. The polymerization of TC2 initiated by TfOH, TfOMe, BF3OEt2, or Et3OBF4 afforded polythiocarbonate with good solubility in common organic solvents and a narrow molecular weight distribution because of the absence of a double‐bond moiety. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1698–1705, 2002  相似文献   

11.
A five‐membered cyclic dithiocarbonate having phenylcarbamate moiety 1 underwent cationic ring‐opening polymerization by using methyl trifluoromethanesulfonate as an initiator in nitrobenzene at 60 °C. Both of the corresponding first‐order kinetic plot and conversion‐molecular weight plot showed linearity to suggest the living fashion of the polymerization, which was then supported by two‐stage polymerization experiment. The living fashion as well as the regioselective formation of the repeating unit suggested significant contribution of the neighboring group participation of the carbamate group to form a stabilized cationic propagating end, of which structure was confirmed by performing an equimolar reaction of 1 and methyl trifluoromethanesulfonate with analyzing the resulting species by NMR spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4459–4464, 2007  相似文献   

12.
Copolymerizations of a six‐membered ring spiro‐orthocarbonate bearing adamantane backbones ( AD ‐ SOC , 1 ) and a monofunctional epoxide, PGE , in the presence of cationic initiators such as Sc(OTf)3 were carried out under various reaction conditions. As a result, instead of the anticipated poly(ether‐ether‐carbonate) 11 , two types of copolyethers ( 12 and 18 ) consisting of two or three types of ether components having different substituent groups were unusually formed along with the evolution of carbon dioxide gas, in which AD ‐ SOC efficiently acted as the corresponding oxetane equivalent monomers 3 and 4 . Furthermore, the copolymerization behavior, including the formation of copolyethers 12 and 18 , unexpectedly and significantly depended on the reaction conditions, such as the concentration of the initiator. For example, the copolymerizations with 5 mol % of Sc(OTf)3 mainly afforded copolyether 18 , while those with 1 mol % mainly gave copolyether 12 . In addition, treatments with 5 mol % of Sc(OTf)3 also yielded CH2Cl2, THF, and DMF‐insoluble networked products, indicating relatively higher thermal stability compared with a common polyether. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1729–1740, 2005  相似文献   

13.
Ring‐opening polymerization of a seven‐membered cyclic carbonate, 1,3‐dioxepan‐2‐one, was investigated with a novel initiator system, BCl3‐HCl·Et2O. Addition of HCl·Et2O promoted the polymerization even at 0°C to produce the corresponding polycarbonate with controlled molecular weight and narrow polydispersity ratio (< 1.2).  相似文献   

14.
15.
Cationic ring‐opening polymerizations of 5‐alkyl‐ or 5,7‐dialkyl‐1,3‐dehydroadamantanes, such as 5‐hexyl‐ ( 4 ), 5‐octyl‐ ( 5 ), 5‐butyl‐7‐isobutyl‐ ( 6 ), 5‐ethyl‐7‐hexyl‐ ( 7 ), and 5‐butyl‐7‐hexyl‐1,3‐dehydroadamantane ( 8 ), were carried out with super Brønsted acids, such as trifluoromethanesulfonic acid or trifluoromethanesulfonimide in CH2Cl2 or n‐heptane. The ring‐opening polymerizations of inverted carbon–carbon bonds in 4–8 proceeded to afford corresponding poly(1,3‐adamantane)s in good to quantitative yields. Poly( 4–8 )s possessing alkyl substituents were soluble in 1,2‐dichlorobenzene, although a nonsubstituted poly(1,3‐adamantane) was not soluble in any organic solvent. In particular, poly( 8 ) exhibited the highest molecular weight at around 7500 g mol?1 and showed excellent solubility in common organic solvents, such as THF, CHCl3, benzene, and hexane. The resulting poly( 4–8 )s containing adamantane‐1,3‐diyl linkages showed good thermal stability, and 10% weight loss temperatures (T10) were observed over 400 °C. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4111–4124  相似文献   

16.
A number of today's accepted basic viewpoints related to cationic ring‐opening polymerizations (CROP) were a matter of vivid disagreements between various research groups in the past. These controversies are described in this article and reasons of some differencies in opinions are explained. It is shown in which way we learned that polyacetals are not exclusively cyclic (as it was assumed), why CROP ions and ion pairs have similar reactivities, and why it was necessary to propose that CROP proceeds at certain conditions by Activated Monomer Mechanism. Among other subtle kinetic problems, application of the dynamic NMR and “temperature jump” techniques in determining rate constants of active species interconversions are discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1919–1933, 2000  相似文献   

17.
18.
Radical ring‐opening polymerizations of a five‐membered cyclic vinyl sulfone monomer, 2‐vinylthiolane‐1,1‐dioxide (VTDO), was carried out by using p‐toluenesulfonyl iodide (TosI) and bromide (TosBr) as radical initiators, and the corresponding ring‐opened polymer (PVTDO) was obtained. Both TosI and TosBr were found to work as the radical initiators for the polymerization of VTDO in bulk. The use of TosI gave PVTDOs with a broad, multimodal distribution of molecular weight in low yields. When 10 mol % of TosBr was employed, the isolated yield of PVTDO reached 49%, and the obtained PVTDO had a relatively narrow, monomodal molecular weight distribution of 1.8 with an Mn of 4100. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

19.
20.
The anionic ring‐opening polymerization of a five‐membered cyclic urethane, 2‐amino‐4,6‐O‐benzylidene‐2‐N,3‐O‐carbonyl‐2‐deoxy‐α,d ‐glucopyranoside (MBUG), which was prepared from naturally abundant d ‐glucosamine, was examined. Potassium tert‐butoxide (t‐BuOK) was the most effective initiator among the evaluated bases and produced polyurethane with the Mn of 7800 without any elimination of CO2. The equimolar reaction of MBUG and t‐BuOK in the presence of CH3I produced N‐methylated MBUG and suggested that the initiation reaction involves proton abstraction from the NH group. This N‐methylated compound did not undergo the polymerization. Therefore, the mechanism of propagation in the ROP of MBUG should involve the proton abstraction and nucleophilic substitution of the resulting amide anion. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2491–2497  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号