首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electronic structures of binuclear ruthenium complexes [Ru2(terpy)2(tppz)]4+ ( 1A ) and [Ru2Cl2(L)2(tppz)]2+ {L = bpy ( 2A ), phen ( 3A ), and dpphen ( 4A )} were studied by density functional theory calculations. Abbreviations of the ligands (Ls) are bpy = 2,2′‐bipyridine, phen = 1,10‐phenanthroline, dpphen = 4,7‐diphenyl‐1,10‐phenanthroline, terpy = 2,2′:6′,2″‐terpyridine, and tppz = tetrakis(2‐pyridyl)pyrazine. Their mononuclear reference complexes [Ru(terpy)2]2+ ( 1B ) and [RuClL(terpy)]+ {L = bpy ( 2B ), phen ( 3B ), and dpphen ( 4B )} were also examined. Geometries of these mononuclear and binuclear Ru(II) complexes were fully optimized. Their geometric parameters are in good agreement with the experimental data. The binuclear complexes were characterized by electrospray ionization mass spectrometry, UV–Vis spectroscopy, and cyclic voltammograms. Hexafluorophosphate salts of binuclear ruthenium complexes of 3A and 4A were newly prepared. The crystal structure of binuclear complex 1A (PF6)4 was also determined. Orbital interactions were analyzed to characterize the metal‐to‐ligand charge‐transfer (MLCT) states in these complexes. The Cl? ligand works to raise the orbital energy of the metal lone pair, which leads to the low MLCT state. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Raman spectroscopic technique has been used to characterize a Ru/TiO2 catalyst and to follow in situ their structural changes during the CO selective methanation reaction (S‐MET). For a better comprehension of the catalytic mechanism, the in‐situ Raman study of the catalysts activation (reduction) process, the isolated CO and CO2 methanation reactions and the effect of the composition of the reactive stream (H2O and CO2 presence) have been carried out. Raman spectroscopy evidences that the catalyst is composed by islands of TiO2–RuO2 solid solutions, constituting Ru–TiO2 interphases in the form of RuxTi1 − xO2 rutile type solid solutions. The activation procedure with H2 at 300 °C promotes the reduction of the RuO2–TiO2 islands generating Ruo–Ti3+ centers. The spectroscopic changes are in agreement with the strong increase in chemical reactivity as increasing the carbonaceous intermediates observed. The selective methanation of CO proceeds after their adsorption on these Ruo–Ti3+ active centers and subsequent C―O dissociation throughout the formation of CHx/CnHx/CnHxO/CHx―CO species. These intermediates are transformed into CH4 by a combination of hydrogenation reactions. The formation of carbonaceous species during the methanation of CO and CO2 suggests that the CO presence is required to promote the CO2 methanation. Similar carbonaceous species are detected when the selective CO methanation is carried out with water in the stream. However, the activation of the catalysts occurs at much lower temperatures, and the carbon oxidation is favored by the oxidative effect of water. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Tris(2,2′‐bipyridine)ruthenium(II) complex‐based carbonic anhydrase (CA) inhibitors, [Ru(bpy)2(bpydbs)]2+ {bpy = 2,2′‐bipyridine and bpydbs = 2,2′‐bipyridinyl‐4,4′‐dicarboxilic acid bis[(2‐{2‐[2‐(4‐sulfamoylbenzoylamino)ethoxy]ethoxy}ethyl)amide]} and [Ru(bpydbs)3]2+, tethering plural benzenesulfonamide groups have been prepared. The CA catalytic activity was effectively suppressed by these synthetic [Ru(bpy)2(bpydbs)]2+ and [Ru(bpydbs)3]2+ inhibitors, and their dissociation constants at pH = 7.2 and at 25°C were determined to be KI = 0.93 ± 0.02 μM and KI = 0.24 ± 0.03 μM, respectively. Next, 2 photoinduced electron‐transfer (ET) systems comprising a Ru2+‐CA complex and an electron acceptor, such as chloropentaamminecobalt(III) ([CoCl(NH3)5]2+) or methylviologen (MV2+) were studied. In the presence of CA and a sacrificial electron acceptor, such as pentaamminechlorocobalt(III) complex, the photoexcited triplet state of 3([Ru(II)]2+)* was quenched through an intermolecular photoinduced ET mechanism. In case of the [Ru(bpydbs)3]2+‐CA‐MV2+ system, the photoexcited triplet state of 3([Ru(bpydbs)3]2+)* was quenched by sacrificial quencher through an intermolecular photoinduced ET mechanism, giving the oxidized [Ru(bpydbs)3]3+. Then the following intramolecular ET from the amino acid residue, Tyr6, near the active site of CA proceeded. We observed a transient absorption around at 410 nm, arising from the formation of a Tyr?+ in the [Ru(bpydbs)3]2+‐CA‐MV2+ system. These artificial Ru(II)‐CA systems may clearly demonstrate both intermolecular and intramolecular photoinduced ET reactions of protein and could be one of the interesting models of the ET proteins. Their photophysical properties and the detailed ET mechanisms are discussed in order to clarify the multistep ET reactions.  相似文献   

4.
We have undertaken an experimental and computational study of the structural properties of a few alkylfluoride–BF3 complexes (RF′–BF3), which are proposed intermediates in a certain class of Friedel–Crafts reactions. Using density functional theory and second‐order Møller–Plesset calculations, we have obtained gas‐phase structures, frequencies, and B–F′ bond potentials for CH3F–BF3, (CH3)2CHF–BF3, and (CH3)3CF–BF3. All the complexes are weakly‐bonded in the gas phase, with B–F′ distances (X3LYP/aug‐cc‐pVTZ) of about 2.4 Å and binding energies (MP2/aug‐cc‐pVTZ) ranging from 5.4 and 6.7 kcal/mol. Accordingly, gas‐phase bond potentials are relatively shallow and flat for these complexes. However, even though the inner walls of the potentials are rather soft (the energies rise by only about 5 to 10 kcal/mol between 2.4 and 1.6 Å), we observe no global or local minima at short B–F′ distances. For the (CH3)2CHF–BF3 and (CH3)3CF–BF3 potentials in dielectric media, we do observe a distinct flattening along the inner wall, which results in shelf‐like region near 1.7 Å, but this feature is not a true local minimum. We have also obtained low‐temperature infrared spectra of the (CH3)2CHF–BF3 complex in solid neon, and the frequencies agree quite favorably with those obtained via computations, which validates the computational assessment of the gas‐phase complexes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
To study the fate of a molecular di‐μ‐oxo‐bridged trinuclear ruthenium complex, [(NH3)5Ru–O–Ru(NH3)4–O–Ru(NH3)5]6+, also known as Ru‐red, during the electro‐driven water oxidation reaction, electrochemical in situ surface enhanced Raman spectroscopy (SERS) investigations have been conducted on an electrochemically roughened gold surface in acidic condition. It was previously described that on a basal plane pyrolitic graphite electrode in 0.1 M H2SO4 aqueous solution, Ru‐red undergoes one electron oxidative conversion into a stable higher oxidation state ruthenium complex, Ru‐brown, at <1.0 V (vs normal hydrogen electrode (NHE)), and this leads to water oxidation and dioxygen release, but the fate of Ru‐red during electrochemistry was not studied in much detail. In this investigation, Ru‐red dispersed in acid electrolyte and immobilized on a roughened gold electrode without Ru‐red in solution has been subjected to anodic controlled potential experiments, and in situ SERS was carried out at various potentials in succession. The electrochemical SERS data obtained for Ru‐red are also compared with in situ SERS results of an electrodeposited ruthenium oxide thin film on the Au disk. Our study suggests that on a gold electrode in sulfuric acid solution containing Ru‐red, one electron oxidative conversion of Ru‐red to a higher oxidation state ruthenium compound, Ru‐brown, occurs at ca. 0.74 V (vs NHE), as supported by the electrochemical in situ SERS experiments. Moreover, at higher potentials and on Au disk, the Ru‐red / Ru‐brown are not stable and slowly decompose or electro‐oxidize leading to deactivation of the tri‐ruthenium catalytic system in acidic medium. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The study of the hydrogen/deuterium exchange reactions of the C(2)‐proton for different carbene precursors has been carried out in the absence and presence of β‐cyclodextrin in D2O at 25°C. Formation of the inclusion complexes of imidazolium salts with the native β‐cyclodextrin and the β‐dimethylcyclodextrin is demonstrated by 1D and 2D 1H NMR, ESI/HRMS and a molecular modelling study. Formation of the inclusion complexes of imidazolium salts with the native β‐cyclodextrin and the β‐dimethylcyclodextrin is a simple and efficient method to modify the acidity of the imidazolium H(2) and to modify its environment. Encapsulation of 1,3‐disubstituted imidazolium chloride by β‐cyclodextrins results in the inhibition of the H(2)/D exchange in the complex. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
A series of metal‐free compounds, ie, planar triprotonated triazine, triazineH3Cl(PF6)2 ( 1 ), planar triprotonated triazineH3Br(PF6)2 ( 2 ), and nonplanar monoprotonated triazineHPF6 ( 3 ), were prepared. Abbreviations used are triazine = tri‐2‐pyridyltriazine. Ruthenium complexes [RuCl(bpy)(L)](PF6), [RuCl(bpy)(L)](PF6)2, and [Ru(L)2](PF6)2 were also prepared, where bpy is 2,2′‐bipyridine and L's are triazine ( 4 ) and monoprotonated triazine ( 5 ), respectively. Ruthenium complexes [Ru(triazine)2](PF6)2 ( 6 ) were also prepared and crystallized. The X‐ray crystal structures of the 3 compounds 1 , 2 , and 3 and the complex 6 were determined. They were also characterized by electrospray ionization mass spectrometry, UV‐vis spectroscopy, and density functional theory calculations.  相似文献   

8.
The Ru(III)/Os(VIII)/Pd(II)/Pt(IV)‐catalysed kinetics of oxidation of glycyl–glycine (Gly‐Gly) by sodium N‐chloro‐p‐ toluenesulfonamide (chloramine‐T; CAT) in NaOH medium has been investigated at 308 K. The stoichiometry and oxidation products in each case were found to be the same but their kinetic patterns observed are different. Under comparable experimental conditions, the oxidation‐kinetics and mechanistic behaviour of Gly‐Gly with CAT in NaOH medium is different for each catalyst and obeys the underlying rate laws:
  • Rate = k [CAT]t [Gly‐Gly]0 [Ru(III)][OH?]x
  • Rate = k [CAT]t[Gly‐Gly]x [Os(VIII)]y[OH?]z
  • Rate = k [CAT]t[Gly‐Gly]x [Pd(II)][OH?]y
  • Rate = k [CAT]t[Gly‐Gly]0 [Pt(IV)]x[OH?]y
Here, and x, y, z < 1 in all the cases. The anion of CAT, CH3C6H4SO2NCl?, has been postulated as the common reactive oxidising species in all the cases. Under comparable experimental conditions, the relative ability of these catalysts towards oxidation of Gly‐Gly by CAT are in the order: Os(VIII) > Ru(III) > Pt(IV) > Pd(II). This trend may be attributed to the different d‐electronic configuration of the catalysts. Further, the rates of oxidation of all the four catalysed reactions have been compared with uncatalysed reactions, under identical experimental conditions. It was found that the catalysed reaction rates are 7‐ to 24‐fold faster. Based on the observed experimental results, detailed mechanistic interpretation and the related kinetic modelling have been worked out for each catalyst. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Rechargeable Li‐O2 batteries are promising candidates for electric vehicles due to their high energy density. However, the current development of Li‐O2 batteries demands highly efficient air cathode catalysts for high capacity, good rate capability, and long cycle life. In this work, a hydrothermal‐calcination method is presented to prepare a composite of Co3O4 hollow nanoparticles and Co organic complexes highly dispersed on N‐doped graphene (Co–NG), which acts as a bifunctional air cathode catalyst to optimize the electrochemical performances of Li‐O2 batteries. Co–NG exhibits an outstanding initial discharge capacity up to 19 133 mAh g?1 at a current density of 200 mA g?1. In addition, the batteries could sustain 71 cycles at a cutoff capacity of 1000 mAh g?1 with low overpotentials at the current density of 200 mA g?1. Co–NG composites are attractive as air cathode catalysts for rechargeable Li‐O2 batteries.  相似文献   

10.
Imidazolium ionic liquids (IMILs) with a piperidine moiety appended via variable length methylene spacers (with n = 1–4) were studied computationally to assess their potential to act as internal base for N‐heterocyclic carbene (NHC) generation. Proton transfer energies computed by B3LYP/6‐311+G(2d,p) were least endothermic for the basic‐IL with n = 3, whose optimized structure showed the shortest C2‐H‐‐‐‐N(piperidine) distance. Inclusion of counter anion (Cl or NTf2) caused dramatic conformational changes to enable close contact between the acidic C2‐H and the anions. To examine the prospect for internal C2‐H‐‐‐‐N coordination, multinuclear NMR data (1H, 15N, and 13C) were computed by gauge independent atomic orbitals–density functional theory (GIAO‐DFT) in the gas phase and in several solvents by the PCM method for comparison with the experimental NMR data for the basic ILs (with n = 2–4) synthesized in the laboratory. These studies indicate that interactions with solvent and counter ion are dominant forces that could disrupt internal C2‐H‐‐‐‐N coordination/proton transfer, making carbene generation from these basic‐ILs unlikely without an added external base. Therefore, the piperidine‐appended IMILs appear suitable for application as dual solvent/base in organic/organometallic transformations that require the use of mild base, without the necessity to alkylate at C‐2 to prevent N‐heterocyclic carbene formation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Three derivatives of alkyl anthracene covalently bonded to aza‐18‐crown‐6 at the nitrogen position, anthracene(CH2)n, (n = 1–3) which act as an on–off fluorogenic photoswitch have been theoretically studied using a computational strategy based on density functional theory at B3LYP/6‐31 + G(d,p) method. The fully optimized geometries have been performed with real frequencies which indicate the minima states. The binding energies, enthalpies and Gibbs free energies have been calculated for aza‐18‐crown‐6 ( L ) and their metal complexes. The natural bond orbital analysis is used to explore the interaction of host–guest molecules. The absorption spectra differences between L and their metal ligands, the excitation energies and absorption wavelength for their excited states have been studied by time‐dependent density functional theory with the basis set 6‐31 + G(d,p). These fluorescent sensors and switchers based on photoinduced electron transfer mechanism have been investigated. The PET process from aza‐crown ether to fluorophore can be suppressed or completely blocked by the entry of alkali metal cations into the aza‐crown ether‐based receptor. Such a suppression of the PET process means that fluorescence intensity is enhanced. The binding selectivity studies of the aza‐crown ether part of L indicate that the presence of the alkali metal cations Li+, Na+ and K+ play an important role in determining the internal charge transfer and the fluorescence properties of the complexes. In addition, the solvent effect has been investigated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Theoretical design on a new molecular switch and fluorescent chemosensor double functional device of aza‐crown ether (2,2′‐dipyridine‐embedded N‐(9‐anthraceneyl(pyrenyl)methyl)aza‐15‐crown‐5) was explored. The interactions between ligands and a series of alkaline earth metal cations (Mg2+, Ca2+, Sr2+, and Ba2+) were investigated. The fully optimized geometry structures of the free ligands ( L 1, L 2) and their metal cation complexes ( L 1/M2+, L 2/M2+) were calculated with the B3LYP/6‐31G(d) method. The natural bond orbital analysis, which is based on optimized geometric structures, was used to explore the interaction of L 1/M2+, L 2/M2+ molecules. The absorption spectra of L 1, L 2, L 1/M2+, and L 2/M2+, and their excited states were studied by time‐dependent density functional theory. A new type molecular device L 2(2,2′‐dipyridine‐embedded N‐(9‐pyrenyl methyl)aza‐15‐crown‐5) is designed, which not only has the selectivity for Sr2+, and construct allosteric switch, but also has fluorescent sensor performance.  相似文献   

13.
Photo‐induced degradation of a monolayer of the Ru(II) complex adsorbed on anatase TiO2 thin films was studied by using resonant micro‐Raman spectroscopy. We developed two contrastive experiments to analyze the degradation mechanism. An exponential decay law was found when the dye was irradiated in the absence of a reducing agent. While the sensitized TiO2 thin film electrode was covered by the I/I3 redox couple, the dye degradation exhibited a slowed linear decay. The experimental result was compared and the degradation mechanism was analyzed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
A homogeneous, molecular, gas‐phase elimination kinetics of 2‐phenyl‐2‐propanol and 3‐methyl‐1‐ buten‐3‐ol catalyzed by hydrogen chloride in the temperature range 325–386 °C and pressure range 34–149 torr are described. The rate coefficients are given by the following Arrhenius equations: for 2‐phenyl‐2‐propanol log k1 (s?1) = (11.01 ± 0.31) ? (109.5 ± 2.8) kJ mol?1 (2.303 RT)?1 and for 3‐methyl‐1‐buten‐3‐ol log k1 (s?1) = (11.50 ± 0.18) ? (116.5 ± 1.4) kJ mol?1 (2.303 RT)?1. Electron delocalization of the CH2?CH and C6H5 appears to be an important effect in the rate enhancement of acid catalyzed tertiary alcohols in the gas phase. A concerted six‐member cyclic transition state type of mechanism appears to be, as described before, a rational interpretation for the dehydration process of these substrates. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Four L ‐valine (L ‐Val) phosphonate dipeptides that are potent inhibitors of zinc metalloproteases, namely, L ‐Val‐C(Me)2‐PO3H2 (V1), L ‐Val‐CH(iP)‐PO3H2 (V2), L ‐Val‐CH(iB)‐PO3H2 (V3), and L ‐Val‐C(Me)(iP)‐PO3H2 (V4), are studied by Fourier‐transform infrared (FT‐IR) spectroscopy, Fourier‐transform Raman spectroscopy (FT‐RS), and surface‐enhanced Raman scattering (SERS). The band assignment (wavenumbers and intensities) is made based on (B3LYP/6‐311 + + G**) calculations. Comparison of theoretical FT‐IR and FT‐RS spectra with those of SERS allows to obtain information on the orientation of these dipeptides as well as specific‐competitive interactions of their functionalities with the silver substrate. More specifically, V1 and V4 appear to interact with the silver substrate mainly via a  CsgCH3 moiety localized at the  NamideCsg(CH3)P molecular fragment. In addition, the  POH and isopropyl units of V4 assist in the adsorption process of this molecule. In contrast, the  CαNH2 and  PO3H groups of V2 and V3 interact with the silver nanoparticles, whereas their isopropyl and isobutyl fragments seem to be repelled by the silver substrate (except for the  CH2  of V3), similar to the  Cβ(CH3)2 fragment of L ‐Val for all L ‐Val phosphonate dipeptides investigated in this work. The adsorption mechanism of these molecules onto the colloidal silver surface is also affected by amide bond behavior. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Solvent, temperature, and high pressure influence on the rate constant of homo‐Diels–Alder cycloaddition reactions of the very active hetero‐dienophile, 4‐phenyl‐1,2,4‐triazolin‐3,5‐dione (1), with the very inactive unconjugated diene, bicyclo[2,2,1]hepta‐2,5‐diene (2), and of 1 with some substituted anthracenes have been studied. The rate constants change amounts to about seven orders of magnitude: from 3.95.10?3 for reaction (1+2) to 12200 L mol?1 s?1 for reaction of 1 with 9,10‐dimethylanthracene (4e) in toluene solution at 298 K. A comparison of the reactivity (ln k2) and the heat of reactions (?r‐nH) of maleic anhydride, tetracyanoethylene and of 1 with several dienes has been performed. The heat of reaction (1+2) is ?218 ± 2 kJ mol?1, of 1 with 9,10‐dimethylanthracene ?117.8 ± 0.7 kJ mol?1, and of 1 with 9,10‐dimethoxyanthracene ?91.6 ±0.2 kJ mol?1. From these data, it follows that the exothermicity of reaction (1+2) is higher than that with 1,3‐butadiene. However, the heat of reaction of 9,10‐dimethylanthracene with 1 (?117.8 kJ mol?1) is nearly the same as that found for the reaction with the structural C=C counterpart, N‐phenylmaleimide (?117.0 kJ mol?1). Since the energy of the N=N bond is considerably lower (418 kJ/bond) than that of the C=C bond (611 kJ/bond), it was proposed that this difference in the bond energy can generate a lower barrier of activation in the Diels–Alder cycloaddition reaction with 1. Linear correlation (R = 0.94) of the solvent effect on the rate constants of reaction (1+2) and on the heat of solution of 1 has been observed. The ratio of the volume of activation (?V) and the volume of reaction (?Vr‐n) of the homo‐Diels–Alder reaction (1+2) is considered as “normal”: ?V/?Vr‐n = ?25.1/?30.95 = 0.81. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Cleavage of disulfide bonds is a common method used in linking peptides to proteins in biochemical reactions. The structures, internal rotor potentials, bond energies, and thermochemical properties (ΔfH°, S°, and Cp(T)) of the S–S bridge molecules CH3SSOH and CH3SS(=O)H and the radicals CH3SS?=O and C?H2SSOH that correspond to H‐atom loss are determined by computational chemistry. Structure and thermochemical parameters (S° and Cp(T)) are determined using density functional Becke, three‐parameter, Lee–Yang–Parr (B3LYP)/6‐31++G (d, p), B3LYP/6‐311++G (3df, 2p). The enthalpies of formation for stable species are calculated using the total energies at B3LYP/6‐31++G (d, p), B3LYP/6‐311++G (3df, 2p), and the higher level composite CBS–QB3 levels with work reactions that are close to isodesmic in most cases. The enthalpies of formation for CH3SSOH, CH3SS(=O)H are ?38.3 and ?16.6 kcal mol?1, respectively, where the difference is in enthalpy RSO–H versus RS(=O)–H bonding. The C–H bond energy of CH3SSOH is 99.2 kcal mol?1, and the O–H bond energy is weaker at 76.9 kcal mol?1. Cleavage of the weak O–H bond in CH3SSOH results in an electron rearrangement upon loss of the CH3SSO–H hydrogen atom; the radical rearranges to form the more stable CH3SS· = O radical structure. Cleavage of the C–H bond in CH3SS(=O)H results in an unstable [CH2SS(=O)H]* intermediate, which decomposes exothermically to lower energy CH2 = S + HSO. The CH3SS(=O)–H bond energy is quite weak at 54.8 kcal mol?1 with the H–C bond estimated at between 91 and 98 kcal mol?1. Disulfide bond energies for CH3S–SOH and CH3S–S(=O)H are low: 67.1 and 39.2 kcal mol?1. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The effect of halogen‐substituent on hydrogen abstraction mechanisms was studied by applying density functional theory functional calculations to the gas‐phase reactions between CHCl?? and CH4 ? nXn (X = H, F, Cl; n = 0–3), and it is found that a heavier X substituent in the substrate results in a greater stabilization of corresponding complex, a lower activation energy, a faster H‐abstraction reaction, and greater exothermicity. However, CH4– reaction is more reactive than CH3F– reaction under the same condition because of dominant π‐donation from the electronegative F atom. We also explored the reactivity difference for the seven reactions in terms of factors derived from bond order, second‐order perturbative energy, and activation strain model analysis. The rate constants are evaluated over a wide temperature range of 298–1000 K by the conventional transition state theory. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Fourier‐transform infrared (FT‐IR), Raman (RS), and surface‐enhanced Raman scattering (SERS) spectra of β‐hydroxy‐β‐methylobutanoic acid (HMB), L ‐carnitine, and N‐methylglycocyamine (creatine) have been measured. The SERS spectra have been taken from species adsorbed on a colloidal silver surface. The respective FT‐IR and RS band assignments (solid‐state samples) based on the literature data have been proposed. The strongest absorptions in the FT‐IR spectrum of creatine are observed at 1398, 1615, and 1699 cm−1, which are due to νs(COOH) + ν(CN) + δ(CN), ρs(NH2), and ν(C O) modes, respectively, whereas those of L ‐carnitine (at 1396/1586 cm−1 and 1480 cm−1) and HMB (at 1405/1555/1585 cm−1 and 1437–1473 cm−1) are associated with carboxyl and methyl/methylene group vibrations, respectively. On the other hand, the strongest bands in the RS spectrum of HMB observed at 748/1442/1462 cm−1 and 1408 cm−1 are due to methyl/methylene deformations and carboxyl group vibrations, respectively. The strongest Raman band of creatine at 831 cm−1w(R NH2)) is accompanied by two weaker bands at 1054 and 1397 cm−1 due to ν(CN) + ν(R NH2) and νs(COOH) + ν(CN) + δ(CN) modes, respectively. In the case of L ‐carnitine, its RS spectrum is dominated by bands at 772 and 1461 cm−1 assigned to ρr(CH2) and δ(CH3), respectively. The analysis of the SERS spectra shows that HMB interacts with the silver surface mainly through the  COO, hydroxyl, and  CH2 groups, whereas L ‐carnitine binds to the surface via  COO and  N+(CH3)3 which is rarely enhanced at pH = 8.3. On the other hand, it seems that creatine binds weakly to the silver surface mainly by  NH2, and C O from the  COO group. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
The kinetics of cyclohexane (CyH) oxygenation with tert‐butyl hydroperoxide (TBHP) in acetonitrile at 50 °C catalysed by a dinuclear manganese(IV) complex 1 containing 1,4,7‐trimethyl‐1,4,7‐triazacyclononane and co‐catalysed by oxalic acid have been studied. It has been shown that an active form of the catalyst (mixed‐valent dimeric species ‘MnIIIMnIV’) is generated only in the interaction between complex 1 and TBHP and oxalic acid in the presence of water. The formation of this active form is assumed to be due to the hydrolysis of the Mn? O? Mn bonds in starting compound 1 and reduction of one MnIV to MnIII. A species which induces the CyH oxidation is radical tert‐BuO . generated by the decomposition of a monoperoxo derivative of the active form. The constants of the equilibrium formation and the decomposition of the intermediate adduct between TBHP and 1 have been measured: K = 7.4 mol?1 dm3 and k = 8.4 × 10?2 s?1, respectively, at [H2O] = 1.5 mol dm?3 and [oxalic acid] = 10?2 mol dm?3. The constant ratio for reactions of the monomolecular decomposition of tert‐butoxy radical (tert‐BuO . → CH3COCH3 + CH) and its interaction with the CyH (tert‐BuO . + CyH → tert‐BuOH + Cy . ) was calculated: 0.26 mol dm?3. One of the reasons why oxalic acid accelerates the oxidation is due to the formation of an adduct between oxalic acid and 1 (K ≈ 103 mol?1 dm3). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号