首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Statistical and amphiphilic block copolymers bearing cinnamoyl groups were prepared by ring opening metathesis polymerization (ROMP). The UV‐induced [2 + 2] cycloaddition reaction of polymer bound cinnamic acid groups was studied in polymer thin films as well as in block copolymer micelles. In both cases, exposure to UV‐light for 10 min led to a crosslinking conversion of about 60%, as determined by FT‐IR spectroscopy and UV–vis absorption measurements. Time based IR‐spectroscopy revealed a maximum conversion of 78% reached after an irradiation time of about 16 min. For micelles obtained from polymers bearing 5 mol % or more cinnamoyl groups, the crosslinking reaction proceeded smoothly, yielding in crosslinked particles which were stable in a non‐selective solvent (CHCl3). Diameters determined by dynamic light scattering in the selective solvent (MeOH) were similar for both, non‐crosslinked and crosslinked micelles, whereas diameters of crosslinked micelles in the non‐selective solvent (CHCl3) were significantly larger compared to MeOH samples. This strategy of direct self assembly of block‐copolymers in a selective solvent followed by “clean” crosslinking, without the need for additional crosslinking reagents or crosslinking initiators, provides a straight forward approach toward ROMP‐based polymeric nano‐particles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2402–2413, 2008  相似文献   

2.
3.
We present an approach to the synthesis of biofunctionalized block copolymer nanoparticles based on ring‐opening metathesis polymerization; these nanoparticles may serve as novel scaffolds for the multivalent display of ligands. The nanoparticles are formed by the self‐assembly of diblock copolymers composed of a hydrophobic block and a hydrophilic activated block that can be functionalized with thiolated ligands in aqueous media. The activated block enables control over the orientation of the displayed ligands, which may be sugars, peptides, or proteins engineered to contain cysteine residues at suitable locations. The nanoparticle diameter can be varied over a wide range through changes in the composition of the block copolymer, and biofunctionalization of the nanoparticles has been demonstrated by the attachment of a peptide previously shown to inhibit the assembly of anthrax toxin. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 928–939, 2006  相似文献   

4.
In this study, a novel type of amphiphilic block copolymers poly(lactic acid)‐block‐poly(ascorbyl acrylate) (PLA‐block‐PAAA) with biodegradable poly(lactic acid) as hydrophobic block and poly(ascorbyl acrylate) (PAAA) as hydrophilic block was successfully developed by a combination of ring‐opening polymerization and atom transfer radical polymerization, followed by hydrogenation under normal pressure. The chemical structures of the desired copolymers were characterized by 1H NMR and gel permeation chromatography. The thermal physical properties and crystallinity were investigated by thermogravimetric analysis, differential scanning calorimetry, and wide angle X‐ray diffraction, respectively. Their self‐assembly behavior was monitored by fluorescence‐probe technique and turbidity change using UV–vis spectrometer, and the morphology and size of the nanocarriers via self‐assembly were detected by cryo‐transmission electron microscopy and dynamic light scattering. These polymeric micelles with PAAA shell extending into the aqueous solution have potential abilities to act as promising nanovehicles for targeting drug delivery. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
Block copolymers containing polystyrene and polycyclooctene were synthesized with a ring‐opening metathesis polymerization/chain‐transfer approach. Polystyrene, containing appropriately placed olefins, was prepared by anionic polymerization and served as a macromolecular chain‐transfer agent for the ring‐opening metathesis polymerization of cyclooctene. These unsaturated polymers were subsequently converted to the corresponding saturated triblock copolymers with a simple heterogeneous catalytic hydrogenation step. The molecular and morphological characterization of the block copolymers was consistent with the absence of significant branching in the central polycyclooctene and polyethylene blocks [high melting temperatures (114–127 °C) and levels of crystallinity (17–42%)]. A dramatic improvement in both the long‐range order and the mechanical properties of a microphase‐separated, symmetric polystyrene–polycyclooctene–polystyrene block copolymer sample was observed after fractionation. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 361–373, 2007  相似文献   

6.
This article describes the formation and characterization of self‐assembled nanoparticles of controlled sizes based on amphiphilic block copolymers synthesized by ring‐opening metathesis polymerization. We synthesized a novel hydrophobic derivative of norbornene; this monomer could be polymerized using Grubbs' catalyst [Cl2Ru(CHPh)(PCy3)2] forming polymers of controlled molecular weight. We synthesized amphiphilic block copolymers of controlled composition and showed that they assemble into nanoparticles of controlled size. The nanoparticles were characterized using dynamic light scattering and transmission electron microscopy. Tuning the composition of the block copolymer enables the tuning of the diameters of the nanoparticles in the 30‐ to 80‐nm range. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3352–3359, 2004  相似文献   

7.
In this contribution, we reported the synthesis of a series of POSS‐terminated polycyclooctadiene (PCOD) telechelics via ring‐opening metathesis polymerization (ROMP) approach. Toward this end, 1,4‐diPOSS‐but‐2‐ene was synthesized via copper‐catalyzed Huisgen cycloaddition reaction (i.e., click chemistry); it was then used as a chain transfer agent (CTA) for the ROMP of cyclooctadiene. The ROMP was carried out with Grubbs second generation catalyst and the POSS‐terminated PCOD telechelics with variable lengths of PCOD were obtained by controlling the molar ratios of CTA to cyclooctadiene. All the POSS‐terminated PCOD telechelics in bulks were microphase‐separated; the morphologies were quite dependent on the lengths of PCOD midchains. The POSS end groups can promote the crystallization of PCOD chains at room temperature, which was in marked contrast to the case of plain PCOD. Compared to the plain PCOD, the POSS‐terminated PCOD telechelics displayed improved thermal stability and surface hydrophobicity. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 223–233  相似文献   

8.
Three amphiphilic rod‐coil diblock copolymers, poly(2‐ethyl‐2‐oxazoline‐b‐γ‐benzyl‐L ‐glutamate) (PEOz‐b‐PBLG), incorporating the same‐length PEOz block length and various lengths of their PBLG blocks, were synthesized through a combining of living cationic and N‐carboxyanhydride (NCA) ring‐opening polymerizations. In the bulk, these block copolymers display thermotropic liquid crystalline behavior. The self‐assembled aggregates that formed from these diblock copolymers in aqueous solution exhibited morphologies that differed from those obtained in α‐helicogenic solvents, that is, solvents in which the PBLG blocks adopt rigid α‐helix conformations. In aqueous solution, the block copolymers self‐assembled into spherical micelles and vesicular aggregates because of their amphiphilic structures. In helicogenic solvents (in this case, toluene and benzyl alcohol), the PEOz‐b‐PBLG copolymers exhibited rod‐coil chain properties, which result in a diverse array of aggregate morphologies (spheres, vesicles, ribbons, and tube nanostructures) and thermoreversible gelation behavior. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3108–3119, 2008  相似文献   

9.
Well‐defined amphiphilic block copolymers were prepared by ring opening metathesis polymerization and their stimuli responsive behavior of formed micelles in aqueous solution was investigated. The hydrophobic core of the micelles consists of either a poly[5,6‐bis(ethoxymethyl)bicyclo[2.2.1]hept‐2‐ene]‐block with a glass transition Tg at room temperature or a poly[endo,exo[2.2.1]bicyclohept‐5‐ene‐2,3‐diylbis (phenylmethanone)] with a Tg of 143 °C. For the polyelectrolyte shell, the precursor block poly[endo,exo[2.2.1]bicyclohept‐5‐ene‐2,3‐dicarboxyclic tert‐butylester] was transformed into the free acidic block by cleavage of the tert‐butyl groups using trifluoroacetic acid. Micellar solutions were prepared by dialysis, dissolving the copolymers in dimethyl sulfoxide which was subsequently replaced by water. All polymers form micelles with radii between 10 and 20 nm at a pH‐value below 5, where the carboxylic acid groups are in the protonated state. The block copolymer micelles show a strong increase of the hydrodynamic radius with increasing pH‐value, due to the repulsion among the formed carboxylate anions resulting in a stretching of the polymer chains. In this state, the micelles exhibit responsive behavior to ionic strength where a contraction of the micelles is observed as the carboxylate charges are balanced by sodium ions, whereas no changes of the hydrodynamic radius on addition of salt are observed at low pH. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1178–1191, 2009  相似文献   

10.
Novel and well‐defined dendrimer‐star, block‐comb polymers were successfully achieved by the combination of living ring‐opening polymerization and atom transfer radical polymerization on the basis of a dendrimer polyester. Star‐shaped dendrimer poly(?‐caprolactone)s were synthesized by the bulk polymerization of ?‐caprolactone with a dendrimer initiator and tin 2‐ethylhexanoate as a catalyst. The molecular weights of the dendrimer poly(?‐caprolactone)s increased linearly with an increase in the monomer. The dendrimer poly(?‐caprolactone)s were converted into macroinitiators via esterification with 2‐bromopropionyl bromide. The star‐block copolymer dendrimer poly(?‐caprolactone)‐block‐poly(2‐hydroxyethyl methacrylate) was obtained by the atom transfer radical polymerization of 2‐hydroxyethyl methacrylate. The molecular weights of these copolymers were adjusted by the variation of the monomer conversion. Then, dendrimer‐star, block‐comb copolymers were prepared with poly(L ‐lactide) blocks grafted from poly(2‐hydroxyethyl methacrylate) blocks by the ring‐opening polymerization of L ‐lactide. The unique and well‐defined structure of these copolymers presented thermal properties that were different from those of linear poly(?‐caprolactone). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6575–6586, 2006  相似文献   

11.
Novel amphiphilic comb‐dendronized diblock copolymers composed of hydrophobic Percec‐type dendronized polystyrene block and hydrophilic comb‐like poly(ethylene oxide) grafted polymethacrylate P(PEOMA) block were designed and synthesized via two steps of atom transfer radical polymerization (ATRP). The comb‐like P(PEOMA) prepared by ATRP of macromonomers (PEOMA) with two different molecular weights (Mn = 300 and 475) were used to initiate the sequent ATRP of dendritic styrene macromonomer (DS). The molecular weights and compositions of the obtained block copolymers were determined by 1H NMR analysis. The copolymers with relatively narrow polydispersities (1.27–1.38) were thus obtained. The bulk properties of comb‐dendronized block copolymers were studied by using differential scanning calorimetry, polarized optical microscopy and wide‐angle X‐ray diffraction (WAXD). Similar to dendronized homopolymers, the block copolymers exhibited hexagonal columnar liquid‐crystalline phase structure. By using such amphiphilic comb‐dendronized block copolymers as building blocks, the rich self‐assembly morphologies, such as twisted string, vesicle, and large compound micelle (LCM), were obtained in a mixture of CH3OH and THF. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4205–4217, 2008  相似文献   

12.
Diblock copolymers of 5‐(methylphthalimide)bicyclo[2.2.1]hept‐2‐ene (NBMPI) and 1,5‐cyclooctadiene were synthesized by living ring‐opening metathesis polymerization with a well‐defined catalyst {RuCl2(CHPh)[P(C6H11)3]2}. Unhydrogenated diblock copolymers showed two glass transitions due to poly(NBMPI) and polybutadiene segments, such as two glass‐transition temperatures at ?86.5 and 115.3 °C for poly 1a and ?87.2 and 115.3 °C for poly 1b . However, only one melting temperature could be observed for hydrogenated copolymers, such as 119.8 °C for poly 2a and 121.7 °C for poly 2b . The unhydrogenated diblock copolymer with the longer poly(NBMPI) chain (poly 1a ; temperature at 10% mass loss = 400 °C) exhibited better thermal stability than the one with the shorter poly(NBMPI) chain (poly 1b ; temperature at 10% mass loss = 385 °C). Two kinds of hydrogenated diblock copolymers, poly 2a and poly 2b , exhibited relatively poor solubility but better thermal stability than unhydrogenated diblock copolymers because of the polyethylene segments. Poly[(hydrochloride quaternized 2‐norbornene‐5‐methyleneamine)‐b‐butadiene]‐1 (poly 3a ) was obtained after the hydrolysis and quaternization of poly 1a . Dynamic light scattering measurements indicated that the hydrodynamic diameters of the cationic copolymer (poly 3a ) in water (hydrodynamic diameter = 1580 nm without salt), methanol/water (4/96 v/v; hydrodynamic diameter = 1500 nm without salt), and tetrahydrofuran/water (4/96 v/v; hydrodynamic diameter = 1200 nm without salt) decreased with increasing salt (NaCl) concentration. The effect of temperature on the hydrodynamic diameter of hydrophobically modified poly 3a was also studied. The inflection point of the hydrodynamic diameter of poly 3a was observed at various polymer concentrations around 30 °C. The critical micelle concentration of hydrophobically modified poly 3a was observed at 0.018 g dL?1. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2901–2911, 2006  相似文献   

13.
14.
Homopolymers and copolymers containing phenylenevinylenes and naphthylenevinylenes can be synthesized by ring‐opening metathesis polymerization of strained monomers such as tetraoctyloxy‐substituted cyclophanedienes and naphthalenophanedienes initiated by the third‐generation Grubbs’ initiator. The resulting homopolymers exhibited low polydispersities. The block copolymers can also be synthesized by the sequential ring‐opening metathesis polymerization of two individual monomers. The structures of homopolymers and block copolymers were fully characterized by nuclear magnetic resonance spectroscopy. The molecular weight distribution of the block copolymers is relatively broad compared to their parent homopolymers possibly due to chain transfer reaction. The molar ratio of the two blocks can be tailored by the ratio of the monomers employed. The block copolymers exhibited a more efficient energy transfer in the solid state between the different blocks than those carried out in solution. The optical and electrochemical properties of the polymers were investigated and exhibited the potential uses in optoelectronics devices. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 67–74  相似文献   

15.
Four families of hyperbranched amphiphilic block copolymers of styrene (Sty, less polar monomer) and 2‐vinylpyridine (2VPy, one of the two more polar monomers) or 4‐vinylpyridine (4VPy, the other polar monomer) were prepared via self‐condensing vinyl reversible addition‐fragmentation chain transfer polymerization (SCVP‐RAFT). Two families contained 4VPy as the more polar monomer, one of which possessing a Sty‐b‐4VPy architecture, and the other possessing the reverse block architecture. The other two families bore 2VPy as the more polar monomer and had either a 2VPy‐b‐Sty or a Sty‐b‐2VPy architecture. Characterization of the hyperbranched block copolymers in terms of their molecular weights and compositions indicated better control when the VPy monomers were polymerized first. Control over the molecular weights of the hyperbranched copolymers was also confirmed with the aminolysis of the dithioester moiety at the branching points to produce linear polymers with number‐average molecular weights slightly greater than the theoretically expected ones, due to recombination of the resulting thiol‐terminated linear polymers. The amphiphilicity of the hyperbranched copolymers led to their self‐assembly in selective solvents, which was probed using atomic force microscopy and dynamic light scattering, which indicated the formation of large spherical micelles of uniform diameter. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1310–1319  相似文献   

16.
Block copolymers composed of acrylic acid and methyl methacrylate with three topologies of double linear blocks, poly(acrylic acid) (PAA) linear block/poly(methyl methacrylate) (PMMA) G1‐dendron and PAA linear block/PMMA G2‐dendron have been prepared by the combination of atom transfer radical polymerization and azide–alkyne click reaction. Proton nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and gel permeation chromatography have been adopted thoroughly to identify the chemical structure of those block copolymers with expected topologies. The self‐assembly of those block copolymers in the selective solvent has been performed through two mixing routes of gentle and abrupt variation in solvent selectivity, and the morphology of the obtained self‐assemblies/aggregates was observed by transmission electron microscopy. Because the abrupt variation route altered sharply the solvent quality during the mixing, the intermolecular association of polymer chains resulted in the smaller self‐assemblies but the further growth of smaller self‐assemblies was not observed. On the contrary, the gentle variation route changed gradually the solvent quality during the mixing, favoring not only the intermolecular association but also the further growth of self‐assemblies to result in larger aggregates. The final morphology of those assemblies/aggregates also exhibited the dependence of PMMA dendron generation. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1446–1456  相似文献   

17.
The linear poly(ε–caprolacton)‐b‐hyperbrached poly(2‐((α‐bromobutyryl)oxy)ethyl acrylate) (LPCL‐b‐HPBBEA) has been successfully synthesized by simultaneous ring‐opening polymerization (ROP) of CL and self‐condensing vinyl polymerization (SCVP) of BBEA in one‐pot. The HPBBEA homopolymers were found to be formed in the polymerization because of the competitive reactions induced by initiation with bifunctional initiator, 2‐hydroxylethyl‐2′‐bromoisobutyrate (HEBiB), and inimer BBEA. The separation of LPCL‐b‐HPBBEA from the polymerization products was achieved by precipitation in methanol. With feed ratio increase of CL and BBEA to HEBiB, the molecular weights of PCL and HPBBEA blocks in the block copolymer enhanced; and the polymerization rate of CL started to decrease gradually after 12 h of polymerization, but the polymerization rate of BBEA was maintained until 24 h of polymerization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7628–7636, 2008  相似文献   

18.
Novel thermo‐responsive poly(N‐isopropylacrylamide)‐block‐poly(l ‐lactide)‐block‐poly(N‐isopropylacylamide) (PNIPAAm‐b‐PLLA‐b‐PNIPAAm) triblock copolymers were successfully prepared by atom transfer radical polymerization of NIPAAm with Br‐PLLA‐Br macroinitiator, using a CuCl/tris(2‐dimethylaminoethyl) amine (Me6TREN) complex as catalyst at 25 °C in a N,N‐dimethylformamide/water mixture. The molecular weight of the copolymers ranges from 18,000 to 38,000 g mol?1, and the dispersity from 1.10 to 1.28. Micelles are formed by self‐assembly of copolymers in aqueous medium at room temperature, as evidenced by 1H NMR, dynamic light scattering (DLS) and transmission electron microscopy (TEM). The critical micelle concentration determined by fluorescence spectroscopy ranges from 0.0077 to 0.016 mg mL?1. 1H NMR analysis in selective solvents confirmed the core‐shell structure of micelles. The copolymers exhibit a lower critical solution temperature (LCST) between 32.1 and 32.8 °C. The micelles are spherical in shape with a mean diameter between 31.4 and 83.3 nm, as determined by TEM and DLS. When the temperature is raised above the LCST, micelle size increases at high copolymer concentrations due to aggregation. In contrast, at low copolymer concentrations, decrease of micelle size is observed due to collapse of PNIPAAm chains. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3274–3283  相似文献   

19.
Several random and block copolynorbornenes with side chains containing terminal hydroxyl, amino, methacryloyl or ammonium groups were derived from the functional alkyl ester‐containing norbornenes by ring‐opening metathesis polymerization (ROMP). The main chain of ROMP‐type polynorbornene had a more important role for glass‐transition temperature in comparison with vinyl addition polymerization. There is little effect on glass‐transition temperature (about ?39 °C) of polynorbornenes with different length of alkyl side chain. The organosoluble copolynorbornenes with active crosslinkable methylacryloyl side chains derived from functional hydroxyl group were prepared to improve the thermal stability of poly(methyl methacrylate) [decomposition temperature (Td)10% = 325 °C in nitrogen] by forming networked AB crosslinked polymer (T = 367 °C in nitrogen). The sizes of nanometer‐scale polymeric micelles of block copolymers having hydrophobic alkyl ester and hydrophilic ammonium groups were measured in the range of 11–25 nm by scanning electron microscopy. These polymeric materials with various functional groups or amphiphilic architectures are accessible by ROMP, whose topology makes them particularly attractive for application potential such as biomedical and photoelectric materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4233–4247, 2005  相似文献   

20.
Self‐assembly of amphiphilic ABA random triblock copolymers in water serves as a novel approach to create unique structure micelles connected with flexible linkages. The ABA triblock copolymers consist of amphiphilic random copolymers bearing hydrophilic poly(ethylene glycol) and hydrophobic dodecyl pendants as the A segments and a hydrophilic poly(ethylene oxide) (PEO) as the middle B segment. The A block is varied in dodecyl methacrylate content of 20%–50% and degree of polymerization (DP) of 100‐200. By controlling the composition and DP of the A block, various architectures can be tailor‐made as micelles in water: PEO‐linked double core unimer micelles, PEO‐looped unimer or dimer micelles, and multichain micelles. Those PEO‐linked or looped micelles further exhibit thermoresponsive solubility in water. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 313–321  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号