首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dyes derived from the biradicalic oxyallyl and cyclopentadienylium were calculated by time‐dependent density functional theory (TDDFT) and the characteristics of the prominent low‐energy transitions revealed by graphical means. According to theoretical and experimental studies, 4‐aminophenyl‐substituted dyes absorb intensely at long wavelengths up to the near infrared. If the amino groups are removed the absorption wavelengths are changed little. As found in the previous studies on the squaraine and croconaine oxyallyl dyes, the substituents play only a minor role in the spectral excitation. Charge‐transfer‐type excitations do not occur between the donor aryl substituents and the central oxyallyl or cyclopentadienylium acceptor group. This behaviour is exceptional since donor–acceptor compounds tend to produce charge‐transfer‐ or polymethine‐type electronic transitions. The hitherto rarely used electron density difference (EDD) maps clearly unveiled the spectral excitation features. The spectral excitation of the title compounds is predominantly localized at the oxyallyl and cyclopentadienylium groups, respectively. Characteristics of simple chromophoric compounds and of conventional CT‐ and polymethine dyes are given for comparison. The biradicaloid character of these dyes is supported by the calculated low singlet–triplet splitting energies. Spin properties were characterized in terms of expectation values of the S2‐operator and antiaromatic properties in terms of nucleus‐independent chemical shifts (NICS). According to the ΔES/T and <S2> criteria compounds with the acyclic oxyallyl fragment are more biradicaloid. The parent compounds oxyallyl, thioxyallyl and cyclopentadienylium, display extremely large <S2> values. These compounds are triplets in the ground state. The absorption wavelengths of selected biradicaloid species were also calculated by the multi‐reference SORCI method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
So far, coumarin dyes have been extensively studied with various means to understand their photophysical behaviors and photochemical properties. Here, our performing time‐dependent density functional theory calculation is aimed at exploring the excited‐state hydrogen bonding dynamics of coumarin 153 (C153) in protic ethanol (EtOH) solvent. The calculated results suggest that the excited‐state hydrogen bond C?O?H?O between C?O group and O?H group in the C153‐EtOH complex is strengthened, and the S0 → S1 transition of the complex corresponds to the highest occupied molecular orbital (HOMO) hopping to the lowest unoccupied molecular orbital (LUMO). The excited‐state hydrogen bond strengthening has been further confirmed by its larger binding energy in the S1 state than in the S0 state. In addition, because of the formation of the hydrogen bond C?O?H?O, a red shift of about 7 nm occurs in the electronic spectra of the C153‐EtOH complex, which is in good accordance with the experiment result. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
ABSTRACT

Titanium dioxide (TiO2) nanocrystals are promising materials for photo-electrochemical water splitting. This study focuses on how surface dopant placement can affect the electronic properties. TiO2 anatase thin films are doped two ways: a cobalt ion replacing a surface titanium ion (surface ingrained) and a cobalt ion chemisorbed to two surface oxygen ions and two NH3 ligands. Specifically, when studying the binding pattern, the cobalt ion dopant changes from an electron acceptor for the surface ingrained model to an electron donor for the chemisorbed model. The optical absorption peaks of the surface ingrained model are attributed to p→d transitions and are much stronger when compared to the d→d transitions for the chemisorbed model. It is the conclusion of this computational study that one can alter the cobalt dopant on the anatase thin film to focus a positive or negative charge at the surface by changing the surface dopant location.  相似文献   

4.
The quantum yields of fluorescence and phosphorescence and decay times of fluorescence were measured for a series of charge-transfer complexes of hexamethylbenzene (an electron donor) with various electron acceptors containing heavy (halogen) atoms and the rate constants of different radiative and radiationless transitions were determined. It was found that radiative T1 → S0 transition, i.e. the phosphorescence, is strongly enhanced by the heavy-atom effect. The mechanism of the heavy-atom enhancement of charge-transfer phosphorescence is discussed and it is concluded that increasing spin- orbit mixing of radiative T1 → S0 charge-transfer transition with singlet-singlet, locally excited transition of acceptor molecule is responsible for the observed effects.  相似文献   

5.
The two-photon absorption of a number of cationic symmetric polymethine dyes based on 3H-indolium and benzothiazolium is experimentally studied upon excitation by nanosecond radiation from a Nd:YAG laser (1064 nm, 12 ns). The two-photon absorption cross section of dye molecules is determined by the two-quantum standard method. The influence of the spectral-luminescent properties and structure of the polymethine dyes on the two-photon absorption cross section is discussed. It is shown that, upon excitation in the range of the long-wavelength band of the dyes studied (the S 0S 1 transition), the maximum of their two-photon absorption is blue shifted. The reasons for a considerable increase in the two-photon absorption of symmetric polymethine dyes upon their excitation in the range of the S 2 state are discussed. Using the data of quantum-chemical calculations, it is shown that, along with changes in the selection rules for two-photon transitions, this increase is connected with an increase in the size of the delocalized π electron cloud of HOMOs involved in the S 0S 2 transition.  相似文献   

6.
Resonance Raman (RR) spectra of free‐base meso‐tetra(p‐hydroxyphenyl)porphine(THPP) were obtained with 397.9, 416 and 514 nm excitation wavelengths, and density functional calculations were carried out to help the elucidation of the photorelaxation dynamics of Soret (Bx and By bands) electronic transitions and the RR spectra of THPP. The RR spectrum indicates that the Franck–Condon (FC) region photorelaxation dynamics for the S0S5 excited electronic state is predominantly along the totally symmetric Cm phC stretching and the CβCβ stretchingand simultaneously along the asymmetric (CmCα)as stretching, ν(phC  C)asstretching, δ(NH)s and γ(CβH) vibrational relaxation processes, while that for S0S4 electronic state is predominantly along the Cm phC stretching and pyrrole breathing. The excited‐state structural dynamics of THPP determined from the RR spectra shows that internal conversion (IC) ByBx electronic relaxation occurs in tens of femtoseconds, and the short‐time dynamics is interpreted using the time‐dependent wave packet theory and Herzberg–Teller (vibronic coupling) contributions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
《光谱学快报》2013,46(4-5):605-616
Abstract

Indoline‐2‐thione (BC), benzimidazole‐2‐thione (BN), benzoxazole‐2‐thione (BO), and benzothiazole‐2‐thione (BS) define an interesting series of aromatic compounds containing a NCS synthonic unit in a heterocyclic ring of five centers, substituted by atomic centers of the type C, N, O, or S, where the main electronic absorption bands are localized in the spectral range of ultraviolet A or B.

The first two singlet electronic transitions of this series, 1S01S1(n,π*) and 1S01S2(π,π*), determine the main spectroscopic characteristic of these compounds in order to be used as potential photochemical actinometers of solar ultraviolet radiation. Furthermore, the second electronic transition, localized in the 270–360 nm ultraviolet spectral range, presents a hipsochromic spectral shift as function of the electronic nature of the heteroatomic centers in the heterocyclic ring.

In order to determine a spectroscopic assignment of the main absorption bands in aqueous solution and analyze the effect of the substituent on the electronic charge distributions in the ground and the first two singlet excited electronic states, we have used a semiempirical molecular orbital calculation in the INDO/S‐CIS approach. On the other hand, we have carried out a molecular orbital calculation in the AM1 framework, in order to determine the energetic stability of the thiones with respect to the thiol compounds.  相似文献   

8.
Optical absorption of MnGa2S4 single crystals is studied at two light polarizations (E ||C and EC). The polarization splitting of the absorption edge points to a splitting of the valence band of MnGa2S4. A contribution to the crystal-field splitting is made by two factors, namely, by a difference in the pseudopotential of cationic sublattice atoms and by tetragonal compression of the lattice along the C axis. A scheme of optical transitions in MnGa2S4 in the Brillouin zone center is suggested, according to which the optical transitions Г3 + Г4 → Г1 occur in the polarization EC, and the Г2 → Г1 transitions occur in the polarization E || C.  相似文献   

9.
On the basis of the 7,8‐dihydrobenzo[c,d]furo[2,3‐f]indole nucleus, a number of unsymmetrical carbocyanines as well as styryl dyes have been synthesized and their absorption spectra have been measured. Starting from the deviations of long‐wavelength maxima, the value of electron‐donor ability D has been estimated for the heterocycle under study and a number of dye end groups have been ranked by their electron‐donor properties. Experimental inferences are supported by the quantum chemically calculated bond length alternations and energy levels for the dyes concerned. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
This paper reviews our results on femtosecond time‐resolved spectroscopy (transient absorption, transient‐grating and fluorescence spectroscopy) to study the photophysics and photochemistry of the two very important biological photoreceptor chromophores phycocyanobilin (PCB) and protochlorophyllide a (PChla). The compound PCB serves as a model chromophore for the photoreceptor phytochrome. By means of transient‐grating spectroscopy where the excitation wavelength was varied ove r the spectral region of the S0S1‐absorption the ultrafast processes were studied upon excitation with varying excess energy delivered to the system. On the basis of the results obtained, both the rate of the photoreaction in PCB and the rate of the decay of different excited‐state species via different decay channels depend on the excitation wavelength. Furthermore, transient absorption experiments illuminating the excited‐state dynamics of PChla, a porphyrin‐like compound and, as substrate of the NADPH/protochlorophyllide oxidoreductase (POR), a precursor of the chlorophyll biosynthesis are presented. In addition to pump‐energy‐dependent measurements performed with PChla dissolved in methanol, the excited‐state dynamics of PChla was interrogated in different solvents that were chosen to mimic different environmental conditions. In addition to the femtosecond time‐resolved absorption experiments the picosecond time‐resolved fluorescence of the system was studied. The transient absorption and tim e‐resolved fluorescence data allow suggesting a detailed model for the excited‐state relaxation of PChla describing the excited‐state processes in terms of a branching of the initially excited state population into a reactive and nonreactive path. Thus, the excited‐state potential energy surface exhibits two distinct S1 and Sx minima separated from the Franck–Condon region along two most likely orthogonal reaction coordinates. Finally, the model derived is related to models suggested to acco unt for the reduction of PChla to chlorophyllide a within the natural enzymatic environment of POR.  相似文献   

11.
Based on the study of the phosphorescence and phosphorescence excitation spectra of Pd(II) tetramethylporphyrin (PdTMP) and Pd(II) tetramethyldiethylporphyrin (PdTMDEP) in solutions in 2-methyltetrahydrofuran and dodecane in the temperature range 77–283 K, the occurrence of the splitting of the lowest degenerate singlet (S 1) and triplet (T 1, T 2) levels of porphyrin molecules is established. In the absorption of molecules of the compounds studied, two components, S 1 and S 2, are revealed in the range of allowed long-wavelength Q(0,0) transitions (530–550 nm) and four components, T 1T 4, are observed in the range of spin-forbidden intersystem crossing transitions S 0T n (560–670 nm), with all the triplet levels T 1-T 4 being located below the S 1 level on the energy scale. It is shown that an increase in the degree of deformation of the porphyrin macrocycle caused by steric interactions between β alkyls and hydrogen meso atoms is accompanied by an increase in the splitting in the system of singlet levels δE(S 2S 1) from 120 cm?1 for PdTMDEP to 215 cm?1 for PdTMP, as well as by an increase in the splitting in the system of triplet levels δE(T 2T 1) from 190 cm?1 for PdTMDEP to 250 cm?1 for PdTMP.  相似文献   

12.
Three‐photon absorption (3PA) properties of symmetric‐type carbazole derivatives show great potential for application in light‐activated therapy and optical limiting. A novel symmetrical carbazole derivative (abbreviated as POCP) with end‐groups of 1,10‐phenanthroline rings as the donor moieties, chained via carbon–nitrogen (C = N) double bond, has been synthetized and its three photon absorption properties has been also determined by using a Q‐switched Nd: YAG laser pumped with 30 ps pulses at 1064 nm in dimethylformamide. The measurement of 3PA cross‐section of this compound is performed by open aperture Z‐scan and σ3PA is 481 × 10–78 cm6 ? s2/photon2 for the transition S0S1. The influence of the molecular structure of this compound on three‐photon absorption cross‐sections is discussed micromechanically by Austin model 1 and Zerner's Intermediate Neglect of Differential Overlap/S method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
P K‐edge X‐ray absorption near‐edge structure (XANES) spectroscopy is a powerful method for analyzing the electronic structure of organic and inorganic phosphorus compounds. Like all XANES experiments, P K‐edge XANES requires well defined and readily accessible calibration standards for energy referencing so that spectra collected at different beamlines or under different conditions can be compared. This is especially true for ligand K‐edge X‐ray absorption spectroscopy, which has well established energy calibration standards for Cl (Cs2CuCl4) and S (Na2S2O3·5H2O), but not neighboring P. This paper presents a review of common P K‐edge XANES energy calibration standards and analysis of PPh4Br as a potential alternative. The P K‐edge XANES region of commercially available PPh4Br revealed a single, highly resolved pre‐edge feature with a maximum at 2146.96 eV. PPh4Br also showed no evidence of photodecomposition when repeatedly scanned over the course of several days. In contrast, we found that PPh3 rapidly decomposes under identical conditions. Density functional theory calculations performed on PPh3 and PPh4+ revealed large differences in the molecular orbital energies that were ascribed to differences in the phosphorus oxidation state (III versus V) and molecular charge (neutral versus +1). Time‐dependent density functional theory calculations corroborated the experimental data and allowed the spectral features to be assigned. The first pre‐edge feature in the P K‐edge XANES spectrum of PPh4Br was assigned to P 1s → P‐C π* transitions, whereas those at higher energy were P 1s → P‐C σ*. Overall, the analysis suggests that PPh4Br is an excellent alternative to other solid energy calibration standards commonly used in P K‐edge XANES experiments.  相似文献   

14.
The Huang-Rhys-Pekar Wp(T, S) function is known to give the thermal-Franck-Condon (FC) weight of single-center radiative and non-radiative transitions for arbitrary energy mismatch p?ω0, temperature T, and FC offset S. The thermal-FC weight for energy transfer is shown also to be Wp(T, S), with S enlarged to be the sum of the S values of the energy donor and energy acceptor. This result generalizes an earlier result of Miyakawa and Dexter for low-temperature Poisson functions. The Wp function with enlarged S is equivalent to the overlap of the donor emission and acceptor absorption bands in the Förster-Dexter theory. Experimental verification is good except for the p dependence of non-radiative and energy-transfer rates for S small (e.g. 4f → 4f transitions). Here, if the smooth, exponential p dependences (exponential energy-gap laws) that have been drawn through many 4f → 4f transition rates in certain hosts (Y2O3, LaF3) are fitted with a Wp(T, S) function with a single S value, this S value is too large to describe 4f → 4f transitions.  相似文献   

15.
The red emitting dyes were synthesized by employing coumarin core as a donor and boron-bonded coumarin as an acceptor. 7-(N,N-Diethylamino)-coumarin 3-aldehyde was reacted with 3-acetyl-4-hydroxy-coumarin, 7-(N,N-diethylamino)-3-acetyl-4-hydroxy-coumarin and 3-acetyl-4-hydroxy-1-methyl-quinolone to form the corresponding chalcones. The synthesized chalcones were though red shifted as compared to the parent coumarin, and were not emitting in red region. The BF2-complexation was used as a tool to introduce a red shift in the molecules. The BF2-complexes synthesized were found to be red emitting and show higher one photon absorption cross section. The solvatochromism shown by these dyes was studied in the light of solvent polarity parameters. DFT calculations were used to understand the photophysical properties of the synthesized dyes. NLO properties of the dyes were estimated by solvatochromic and computational methods. All the molecules synthesized were characterised with the HRMS and NMR spectral Analysis.  相似文献   

16.
张丽  李向东  蒋新革 《物理学报》2006,55(9):4501-4505
采用离子球模型,通过自洽求解Boltzmann方程和Poisson方程,得到类氦氖离子Kα线系的两条电偶极辐射光谱能量随等离子体环境的漂移.结果显示,Kα线系电偶极谱线随等离子体电子密度增大发生红移,红移量与等离子体电子密度有近似的正比关系;随着等离子体电子温度的降低,光谱红移对等离子体电子密度的敏感性增大.另外,所研究的两条谱线间的能量间隔随等离子体电子密度的增大而减小,减小量随等离子体电子密度的变化也呈现出近似的线性规律.值得注意的是,类氦氖Kα线系中两条电偶极谱线分别为互组合线与共振谱线,而其能量差就是1s2p(3P1)的交换能,因此进一步发现能级中交换能将随等离子体环境变化的规律.所观察到的光谱红移和精细结构分裂在高密度等离子体中都有明显的变化,对探索高密度等离子体的诊断新方法有重要意义. 关键词: 光谱漂移 交换能 等离子体 类氦离子  相似文献   

17.
The sensitized fluorescence and laser emissions of dye mixtures; (I) coumarin 102 (donor) and acridine orange (acceptor) and (II) coumarin 47 (donor) and acridine orange (acceptor) with Hg-lamp and N2 laser, have been measured as a function of dye concentration and of the pump power (N2 laser). Acridine orange which does not lase by itself on excitation with N2 laser, lases efficiently in the presence of 7-amino-coumarins via singlet-singlet energy transfer. Energy transfer rate constants and critical distances have been estimated from fluorescence intensity and lifetime measurements. The performance of energy transfer dye lasers (ETDLs) are discussed in terms of spectral characteristics of the dyes and their penetration depths.  相似文献   

18.
Photolabile protecting groups have been extensively studied and applied for protection of small biological molecules, which make it convenient to detect the biological processes of the caged compounds. In this study, a series of 8‐nitroquinoline‐based photolabile caging groups for carboxylic acid were synthesized with improved photolysis efficiency. Among them, 6‐bromo‐8‐nitro‐1, 2‐dihydroquinolinyl chromophore was proven the best derivative on account of its longest absorption wavelength (345 nm), highest caging ability, and quantum yield (Φ = 0.003). Moreover, density functional theory calculations were performed in order to study the photolysis mechanisms. Theoretical calculations revealed that the reaction was kinetically inert under general mild condition with the high barrier height of 34.3 kcal/mol at carbonyl migration step, while under the photolysis condition, because of the large energy gap (64.5 kcal/mol) between S0 and S1 states, the reaction should be accessible in the triplet ground state (T1) through successive excitation of S0S1 states, subsequent intersystem crossing of S1T1 states, and finally returned to the stable S0 state for product via potential energy surface crossing between T1 and S0 states. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
R K Garg  Vasant Dandawate 《Pramana》1995,44(5):471-479
Collision induced non-radiative transitions in neon plasma have been studied using high intra-cavity radiation field of a 633 nm He-Ne laser. The transitions, induced from 3s 2 energy level to 4s1 and 5s1 groups of energy levels, have been detected as changes in intensities of the spectral lines originating from these energy levels. From these intensity measurements, the quantities governing the transitions i.e. (i)S 3 e /S 3RT , the ratio of the probabilities of electronic deexcitation to the total radiative deexcitation of energy level 3 (ii) 〈r 23 e v e〉, rate of excitation transfer per particle and (iii)S 23 e , the total probability for excitation transfer from level 2 to level 3 at a certain value of electron density have been calculated.  相似文献   

20.
The effects of substituents on the electronic structures of di(thienylene vinylene) (2TV) in ground and excited states are studied using density functional theory (DFT) and time‐dependent DFT (TD‐DFT), respectively. A representative set of electron donating groups (amino, methoxy and methyl) and withdrawing groups (acetylene, cyano and nitro) are introduced on the vinylene and thienyl moieties to investigate the influence of substituents. Bulk solvent effects are also taken into account by means of the polarizable continuum model (PCM). In contrast to the aromatic structures of 2TV and its derivatives in their ground (S0) states, the electronic structures of first singlet excited (S1) states are rather delocalized. The electron‐donating/withdrawing capability, position and number of substituents are important factors in tuning the vertical S0 → S1 absorption energies and S1 → S0 emission energies of 2TV derivatives. The NO2‐ and NH2‐substituents exert significant effects on the geometries of both ground and excited states and hence the absorption and photoluminescence (PL) emission spectra. The solvent polarity introduces modest influence on the excitation energies for most of the 2TV derivatives. But the absorption and PL emission spectra of nitro‐substituted 2TV exhibit noticeable red shifts as the medium polarity increases. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号