首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanostructures formed in a titanium dioxide (TiO2)–poly(styrene)‐block‐poly(ethyleneoxide) nanocomposite film on top of fluor‐doped tin oxide (FTO) layers are investigated. The combinatorial approach is based on probing a wedge‐shaped FTO‐gradient with grazing incidence small angle X‐ray scattering (GISAXS) in combination with a moderate micro‐focus X‐ray beam. The characteristic lateral length is given by adjacent nanowire‐shaped TiO2 regions. It decreases from 200 nm on the thick FTO layer to 90 nm on the bare glass surface.

  相似文献   


2.
3.
Twinning in a CuInS2 layer in a completed thin‐film solar cell was analyzed by means of electron backscatter diffraction. This technique revealed the microstructure of the CuInS2 thin films and local orientation relationships between the grains. At various locations within the layer it was possible to retrace how twinning occurred comparing the local orientations with the theoretically possible changes in orientation by twinning. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

  相似文献   


4.
The crystallization process of mechanically alloyed Fe75Zr25 metallic glasses is investigated by means of both thermo‐magnetization and in situ neutron powder thermo‐diffraction experiments in the temperature range 300–1073 K. It was found that the crystallization takes place in a two‐step process, involving firstly the appearance of metastable Fe and Fe2Zr crystalline phases between 880 K and 980 K, and a subsequent polymorphic transformation into Fe3Zr above 980 K. These findings explain the anomalous magnetization vs. temperature behaviour on heating–cooling cycles.

  相似文献   


5.
The metastability of the bixbyite‐ and corundum‐type In2O3 polymorphs up to 33 GPa (at room temperature) is shown. While compressed (in diamond anvil cells) and laser‐heated, both polymorphs undergo a phase transition to the Rh2O3‐II‐type structure (space group Pbcn, No. 60). The direct transition from bixbyite to Rh2O3‐II structure has not yet been observed for any other oxide.

  相似文献   


6.
We discovered and characterized the χ (3)‐active Na3Li(SeO4)2·6H2O crystal with considerably high Raman gain coefficients for laser physics and nonlinear optics. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

  相似文献   


7.
Alkali‐free Cu(In,Ga)Se2(CIGS) absorbers grown on Mo‐coated alumina (Al2O3) substrates were doped with potassium (K) after CIGS growth by a potassium fluoride (KF) post‐deposition treatment (PDT). The addition of K to the absorber leads to a strong increase in cell efficiency from 10.0% for the K‐free cell to 14.2% for the K‐doped cell, mainly driven by an increase in the open‐circuit voltage Voc and the fill factor FF, and to an increase in the net charge carrier density. Hence K doping by KF‐PDT is comparable to doping with Na.

  相似文献   


8.
The authors describe an organic complementary inverter with N,N′‐ditridecyl‐3,4,9,10‐perylenetetracarboxylic diimide as an n‐type semiconductor and pentacene as a p‐type semiconductor. Each transistor of the inverter exhibited high carrier mobility: 1.62 cm2/Vs for an n‐type drive transistor and 0.57 cm2/Vs for a p‐type switch transistor. The gain of the inverter reached 125. Another inverter using Ta2O5 as a high κ gate dielectric performed well with a gain of 500 and an operation voltage of only 5 V.

  相似文献   


9.
Thin amorphous tantalum films are prepared on Si(111) substrates in a metallic glassy state. The amorphous monoatomic state of the film is characterized by X‐ray diffraction studies. The glassy state leads to a negative t emperature c oefficient of the r esistivity (TCR) for low sample temperatures <200 K which is attributed to incipient localization. Above 200 K a positive TCR is observed as expected for a normal Boltzmann transport regime. Upon heating the Si substrate to 1200 K TaSi2 is formed out of the amorphous tantalum film and the silicon substrate. The TaSi2 layer is crystalline as evident from X‐ray diffraction data.

  相似文献   


10.
We propose a theory of thin film photovoltaics in which one of the polycrystalline films is made of a pyroelectric material grains such as CdS. That film is shown to generate strong polarization improving the device open circuit voltage. Implications and supporting facts for the major photovoltaic types based on CdTe and CuIn(Ga)Se2 absorber layers are discussed.

  相似文献   


11.
In this Letter, a novel modified anodization was utilized to synthesize high‐aspect‐ratio, top‐open and ultraflat‐surface TiO2 nanotubes. The interruption of voltage during anodization leads to the formation of a double‐layered structure. Due to the weak mechanical connection between the upper and the underlying layer, the two parts can be easily detached. Compared with the conventional ultrasonication method to remove the clusters of nanotubes where rough surfaces resulted, this efficient and reliable strategy may facilitate further applications of TiO2 nanotubes in diverse conditions.

  相似文献   


12.
The current–voltage characteristics and photoresponse of mesa structured {111}‐oriented homoepitaxial CVD diamond p(i)n‐junctions with different intrinsic layer thickness are investigated. When a sufficiently thick intrinsic layer is present, a rectification ratio of 108 at ±10 V could be obtained. Good rectifying diodes show a high photoresponse ratio between 210 nm (above bandgap) and 500 nm (below bandgap), making them suitable for UV detection purposes. The results are compared with similar measurements carried out on polycrystalline CVD diamond pn‐junctions.

  相似文献   


13.
In this work we show that the growth of more than 250 µm thick self‐organized TiO2 nanotube layers is possible, using an electrochemical approach in organic electrolytes. The tubes can grow as a hexagonal close packed pore array. Crucial parameters that decide on the dimensions are the fluoride ion concentration, the voltage and the anodization time. Self‐organized tube formation is restricted to a critical parameter range. Highest aspect ratio tubes can be achieved under a set of very optimized conditions. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

  相似文献   


14.
We demonstrate the fabrication of a solid state heterojunction photovoltaic device with solution‐processed graphene oxide (GO) and n‐Si. Partially reduced GO with a high optical gap (2.8 eV) was spin‐coated on the n‐Si substrate and a heterojunction device was fabricated with the structure of Au/pr‐GO/n‐Si. In the fabricated device, incident light was transmitted through the thin GO film to reach the junction interface, generating photoexciton, and thereby a photovoltaic action was observed. By means of a built‐in electric potential at the GO/n‐Si junction, photoexcited electrons and holes can be separated, transported and collected at the electrodes.

  相似文献   


15.
Write‐once–read‐many‐times memory (WORM) devices were fabricated using Ti/Au and Au as top contacts on ZnO thin films on Si. Electrical characterization shows that both types of WORM devices have large resistance OFF/ON ratio (R ratio), small resistance distribution range, long retention and good endurance. WORM devices with Au top contact have better performance of higher R ratio because of a larger work function of Au compared to Ti.

  相似文献   


16.
We study graphene growth on hafnia (HfO2) nanoparticles by chemical vapour deposition using optical microscopy, high resolution transmission electron microscopy and Raman spectroscopy. We find that monoclinic HfO2 nanoparticles neither reduce to a metal nor form a carbide while nucleating nanometer domain‐sized few layer graphene. Hence we regard this as an interesting non‐metallic catalyst model system with the potential to explore graphene growth directly on a (high‐k) dielectric.

  相似文献   


17.
We report on solution‐processible polymer solar cells (PSCs) fabricated on a papery substrate using carton. Highly conductive PEDOT:PSS was used as a bottom anode and planarization layer, and a semi‐transparent top cathode was applied. This research could be an important approach to the development of all‐solution‐processible papery PSCs as well as paper electronics.

  相似文献   


18.
We report the fabrication procedure and the characterization of an Al0.3Ga0.7As solar cell containing high‐density GaAs strain‐free quantum dots grown by droplet epitaxy. The production of photocurrent when two sub‐bandgap energy photons are absorbed simultaneously is demonstrated. The high quality of the quantum dot/barrier pair, allowed by the high quality of nanostructured strain‐free materials, opens new opportunities for quantum dot based solar cells.

  相似文献   


19.
Three‐dimensional (3D) CeO2 micropillows were synthesized by using solvothermal method. The pH of the precursor solution was adjusted to 10 by adding ammonium hydroxide. The structural, morphology and compositional characteristics of CeO2 micropillows were investigated by XRD, SEM, TEM and EDAX. XRD analysis showed the formation of CeO2 micropillows. BET analysis showed high specific surface area for the synthesized CeO2 micropillows (191 m2 g–1). Optical absorption of CeO2 micropillows showed enhanced photoabsorption ability with the estimated band gap energy of 2.8 eV. The photodegradation rate of the CeO2micropillows was found to be 87% and obeys pseudo‐first‐order equation. The photocatalytic results indicated that the CeO2 micropillows exhibit enhanced photocatalytic property towards azo dye acid orange 7 (AO7) under UV–Vis light illumination.

  相似文献   


20.
We demonstrated important changes produced on the modulation frequency of hybrid organic–inorganic light‐emitting diodes to examine the applicability as a light source for visible optical communications. The fabricated device structure was 4,4′‐bis[N ‐(1‐napthyl)‐N ‐phenyl‐amino]biphenyl/4,4′‐(bis(9‐ethyl‐3‐carbazovinylene)‐1,1′‐biphenyl:4,4′‐bis[9‐dicarbazolyl]‐2,2′‐biphenyl/ZnS/LiF/MgAg. This device showed an improvement in the modulation frequency using ZnS instead of an organic material, tris(8‐hydroxyquinoline)aluminum. A maximum cutoff frequency of 20.6 MHz was achieved.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号