首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Treatment of [{Me2C6H(CH2PtBu2)2}Rh(η1‐N2)] ( 1a ) with molecular oxygen (O2) resulted in almost quantitative formation of the dioxygen adduct [{Me2C6H(CH2PtBu2)2}Rh(η2‐O2)] ( 2a ). An X‐ray diffraction study of 2a revealed the shortest O? O bond reported for Rh? O2 complexes, indicating the formation of a RhI? O2 adduct, rather than a cyclic RhIII η2‐peroxo complex. The coordination of the O2 ligand in 2a was shown to be reversible. Treatment of 2a with CO gas yielded almost quantitatively the corresponding carbonyl complex [{Me2C6H(CH2PtBu2)2}Rh(CO)] ( 3a ). Surprisingly, treatment of the structurally very similar pincer complex [{C6H3(CH2PiPr2)2)}Rh(η1‐N2)] ( 1b ) with O2 led to partial decomposition, with no dioxygen adduct being observed.  相似文献   

2.
A new CeIV complex [Ce{NH(CH2CH2N=CHC6H2‐3,5‐(tBu)2‐2‐O)2}(NO3)2] ( 1 ), bearing a dianionic pentadentate ligand with an N3O2 donor set, has been prepared by treating (NH4)2Ce(NO3)6 with the sodium salt of ligand L1 . Complex 1 in the presence of TEMPO and 4 Å molecular sieves (MS4 A) has been found to serve as a catalyst for the oxidation of arylmethanols using dioxygen as an oxidant. We propose an oxidation mechanism based on the isolation and reactivity study of a trivalent cerium complex [Ce{NH(CH2CH2N=CHC6H2‐3,5‐(tBu)2‐2‐O)2}(NO3)(THF)] ( 2 ), its side‐on μ‐O2 adduct [Ce{NH(CH2CH2N=CHC6H2‐3,5‐(tBu)2‐2‐O)2}(NO3)]2(μ‐η22‐O2) ( 3 ), and the hydroxo‐bridged CeIV complex [Ce{NH(CH2CH2N=CHC6H2‐3,5‐(tBu)2‐2‐O)2}(NO3)]2(μ‐OH)2 ( 4 ) as key intermediates during the catalytic cycle. Complex 2 was synthesized by reduction of 1 with 2,5‐dimethyl‐1,4‐bis(trimethylsilyl)‐1,4‐diazacyclohexadiene. Bubbling O2 into a solution of 2 resulted in formation of the peroxo complex 3 . This provides the first direct evidence for cerium‐catalyzed oxidation of alcohols under an O2 atmosphere.  相似文献   

3.
The bright yellow Schiff‐base complex Eu(TRENDSAL) ( 1 ) (TRENDSAL = N[CH2CH2N=CH(2‐OH‐3,5‐tBu2C6H2)]3) was prepared in 71 % yield by treatment of EuCl3·6H2O simultaneously with 3,5‐di‐tert‐butylsalicylicaldehyde and tris(2‐aminoethyl)amine in the presence of triethylamine. X‐ray crystal structure analyses of the solvates 1 ·DME (DME = 1,2‐dimethoxyethane) and 1 ·MeCN demonstrated the tight encapsulation of the Eu3+ ion, allowing not even the “slim” acetonitrile to enter the coordination sphere of europium.  相似文献   

4.
A series of four C,N‐chelated diorganotin(IV) compounds, namely (LCN)2Sn(OCH2CH2O) ( 1 ), [LCNBuSn(OCH2CH2O)]2 ( 2 ), (LCN)2Sn(1,2‐(O)2‐3,5‐tBu2C6H2) ( 3 ) and [LCNBuSn(1,2‐(O)2‐3,5‐tBu2C6H2)]2 ( 4 ) (LCN = 2‐(Me2NCH2)C6H4), one zinc species, namely LNOZnEt ( 5 ) (LNO = [2‐(MeO)C6H4]NC(Me)?C(H)C(Me)?O), and one magnesium complex, namely [LNNMg]6 ( 6 ), (LNN = [2‐(Me2NCH2)C6H4]N), were used as catalysts for the synthesis of poly(ethylene terephthalate) (PET) from dimethyl terephthalate and ethylene glycol. Prepared PET samples were primarily characterized using the size exclusion chromatography technique. The highest number‐average molar mass of prepared PET samples reached 10.7 kg mol?1. Novel dimeric compound 2 was structurally characterized using both multinuclear NMR spectroscopy and X‐ray diffraction analysis. In addition, an alternative synthesis of 1 is described. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The half‐open rare‐earth‐metal aluminabenzene complexes [(1‐Me‐3,5‐tBu2‐C5H3Al)(μ‐Me)Ln(2,4‐dtbp)] (Ln=Y, Lu) are accessible via a salt metathesis reaction employing Ln(AlMe4)3 and K(2,4‐dtbp). Treatment of the yttrium complex with B(C6F5)3 and tBuCCH gives access to the pentafluorophenylalane complex [{1‐(C6F5)‐3,5‐tBu2‐C5H3Al}{μ‐C6F5}Y{2,4‐dtbp}] and the mixed vinyl acetylide complex [(2,4‐dtbp)Y(μ‐η13‐2,4‐tBu2‐C5H4)(μ‐CCtBu)AlMe2], respectively.  相似文献   

6.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XXIII. Reactions of tBu2P–P=P(Me)tBu2 with (Et3P)2NiCl2 and [{η2‐C2H4}Ni(PEt3)2] tBu2P–P=P(Me)tBu2 ( 1 ) forms with (Et3P)2NiCl2 ( 2 ) and Na(Nph) the [μ‐(1,3 : 2,3‐η‐tBu2P4tBu2){Ni(PEt3)Cl}2] ( 3 ) as main product. Using Na/Hg instead as reducing agent the Ni0 compounds [{η2tBu2P–P}Ni(PEt3)2] ( 4 ), [{η2tBu2P–P=P–PtBu2}Ni(PEt3)2] ( 5 ) and [(Et3P)Ni(μ‐PtBu2)]2 ( 6 ) with four‐membered Ni2P2 ring result. [{η2‐C2H4}Ni(PEt3)2] yields with 1 also 4 . The compounds were characterized by 1H and 31P{1H} NMR investigations and 3 also by a single crystal X‐ray analysis. It crystallizes triclinic in the space group P 1 with a = 1129.4(2), b = 1256.8(3), c = 1569.5(3) pm, α = 72.44(3)°, β = 70.52(3)° and γ = 74.20(3)°.  相似文献   

7.
The first example of NO insertion into a Bi?C bond has been found in the direct reaction of NO with a Bi3+ complex of the unusual (C6H2tBu2‐3,5‐O‐4)2? oxyaryl dianionic ligand, namely, Ar′Bi(C6H2tBu2‐3,5‐O‐4) [Ar′=2,6‐(Me2NCH2)2C6H3] ( 1 ). The oximate complexes [Ar′Bi(ONC6H2‐3,5‐tBu2‐4‐O)]2(μ‐O) ( 3 ) and Ar′Bi(ONC6H2‐3,5‐tBu2‐4‐O)2 ( 4 ) were formed as a mixture, but can be isolated in pure form by reaction of NO with a Bi3+ complex of the [O2C(C6H2tBu2‐3‐5‐O‐4]2? oxyarylcarboxy dianion, namely, Ar′Bi[O2C(C6H2tBu2‐3‐5‐O‐4)‐κ2O,O’]. Reaction of 1 with Ph3CSNO gave an oximate product with (Ph3CS)1? as an ancillary ligand, (Ph3CS)(Ar′)Bi(ONC6H2‐3,5‐tBu2‐4‐O) ( 5 ).  相似文献   

8.
Treatment of {HNR}2C10H6‐1, 8 [R = SiMe3 ( 1 ), CH2But ( 2 )] with Sn[N(SiMe3)2]2 afforded the cyclic stannylene Sn[{NR}2C10H6‐1, 8] [R = SiMe3 ( 3 ), CH2But ( 4 )]. From 3 and SnCl2 in THF and crystallisation from toluene, the product was the crystalline tetracyclic compound ( 5 ) as the (toluene)0.5‐solvate. Reaction of 4 with the silylene Si[(NCH2But)2C6H4‐1, 2] ( 6 ) [abbreviated as Si(NN)] in benzene and crystallisation in presence of Et2O furnished the crystalline tricyclic complex Sn[{Si(NCH2But)2C6H4‐1′, 2′}2‐{(NCH2But)2C10H6‐1, 8}] ( 7 ) as the Et2O‐solvate. Complex 5 slowly dissociated into its factors 3 and SnCl2 in toluene, but rapidly in THF. Solutions of 7 in C6D6, C7D8 or THF‐d8, studied by multinuclear, variable temperature NMR spectroscopy, revealed the presence of an equilibrium between 8 (an isomer of 7 , in which the skeletal atoms of the eight‐membered ring were , rather than the of 7 ) and 4 + 2 Si(NN), with 8 dominant in PhMe but not in THF; additionally 8 was shown to be fluxional and solutions of 8 in C6D6 or C7D8 decomposed to give the silane Si(NN)[(NCH2But)2C10H6‐1, 8], 6 and Sn metal. The X‐ray structures of 3 , 5 and 7 are presented.  相似文献   

9.
Our studies have been focused on the synthesis of N→Ga coordinated organogallium sulfides [L1Ga(μ‐S)]3 ( 1 ) and [L2Ga(μ‐S)]2 ( 2 ) containing either N,C,N‐ or C,N‐chelating ligands L1 or L2 (L1 is {2,6‐(Me2NCH2)2C6H3}? and L2 is {2‐(Et2NCH2)‐4,6‐tBu2‐C6H2}?). As the result of the different ligands, compounds 1 and 2 differ mutually in their structure. To change the Ga/S ratio, unusually N→Ga coordinated organogallium tetrasulfide L1Ga(κ2‐S4) ( 3 ) was prepared and the unprecedented complex [{2‐[CH{(CH2)3CH3}(μ‐OH)]‐6‐CH2NMe2}C6H3]GaS ( 4 ) was also isolated as the minor by‐product of the reaction. Compounds 1 – 3 were further studied as potential single‐source precursors for amorphous GaS thin film deposition by spin‐coating.  相似文献   

10.
A series of group 4 metal complexes bearing amine‐bis(phenolate) ligands with the amino side‐arm donor: (μ‐O)[Me2N(CH2)2N(CH2‐2‐O‐3,5‐tBu2‐C6H2)2ZrCl]2 ( 1a ), R2N(CH2)2N(CH2‐2‐O‐3‐R1‐5‐R2‐C6H2)2TiCl2 (R = Me, R1, R2 = tBu ( 2a ), R = iPr, R1, R2 = tBu ( 2b ), R = iPr, R1 = tBu, R2 = OMe ( 2c )), and Me2N(CH2)2N(CH2‐2‐O‐3,5‐tBu2‐C6H2)(CH2‐2‐O‐C6H4)TiCl2 ( 2d ) are used in ethylene and propylene homopolymerization, and ethylene/1‐octene copolymerization. All complexes, upon their activation with Al(iBu)3/Ph3CB(C6F5)4, exhibit reasonable catalytic activity for ethylene homo‐ and copolymerization giving linear polyethylene with high to ultra‐high molecular weight (600·× 103–3600·× 103 g/mol). The activity of 1a /Al(iBu)3/Ph3CB(C6F5)4 shows a positive comonomer effect, leading to over 400% increase of the polymer yield, while the addition of 1‐octene causes a slight reduction of the activity of the complexes 2a‐2d . The complexes with the NMe2 donor group ( 2a , 2d , 1a ) display a high ability to incorporate a comonomer (up to 9–22 mol%), and the use of a bulkier donor group, N(iPr)2 ( 2b , 2c ), results in a lower 1‐octene incorporation. All the produced copolymers reveal a broad chemical composition distribution. In addition, the investigated complexes polymerized propylene with the moderate ( 1a , 2a ) to low ( 2b‐2d ) activity, giving polymers with different microstructures, from purely atactic to isotactically enriched (mmmm = 28%). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2467–2476  相似文献   

11.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes XXI The Influence of the PR3 Ligands on Formation and Properties of the Phosphinophosphinidene Complexes [{η2tBu2P–P}Pt(PR3)2] and [{η2tBu2P1–P2}Pt(P3R3)(P4R′3)] (R3P)2PtCl2 and C2H4 yield the compounds [{η2‐C2H4}Pt(PR3)2] (PR3 = PMe3, PEt3, PPhEt2, PPh2Et, PPh2Me, PPh2iPr, PPh2tBu and P(p‐Tol)3); which react with tBu2P–P=PMetBu2 to give the phosphinophosphinidene complexes [{η2tBu2P–P}Pt(PMe3)2], [{η2tBu2P–P}Pt(PEt3)2], [{η2tBu2P–P}Pt(PPhEt2)2], [{η2tBu2P–P}Pt(PPh2Et)2], [{η2tBu2P–P}Pt(PPh2Me)2], [{η2tBu2P–P}Pt(PPh2iPr], [{η2tBu2P–P}Pt(PPh2tBu)2] and [{η2tBu2P–P}Pt(P(p‐Tol)3)2]. [{η2tBu2P–P}Pt(PPh3)2] reacts with PMe3 and PEt3 as well as with tBu2PMe, PiPr3 and P(c‐Hex)3 by substituting one PPh3 ligand to give [{η2tBu2P1–P2}Pt(P3Me3)(P4Ph3)], [{η2tBu2P1–P2}Pt(P3Ph3)(P4Me3)], [{η2tBu2P1–P2}Pt(P3Et3)(P4Ph3)], [{η2tBu2P1–P2}Pt(P3MetBu2)(P4Ph3)], [{η2tBu2P1–P2}Pt(P3iPr3)(P4Ph3)] and [{η2tBu2P1–P2}Pt(P3(c‐Hex)3)(P4Ph3)]. With tBu2PMe, [{η2tBu2P–P}Pt(P(p‐Tol)3)2] forms [{η2tBu2P1–P2}Pt(P3MetBu2)(P4(p‐Tol)3)]. The NMR data of the compounds are given and discussed with respect to the influence of the PR3 ligands.  相似文献   

12.
Reaction of [U(TrenTIPS)(PH2)] ( 1 , TrenTIPS=N(CH2CH2NSiPri3)3) with C6H5CH2K and [U(TrenTIPS)(THF)][BPh4] ( 2 ) afforded a rare diuranium parent phosphinidiide complex [{U(TrenTIPS)}2(μ‐PH)] ( 3 ). Treatment of 3 with C6H5CH2K and two equivalents of benzo‐15‐crown‐5 ether (B15C5) gave the diuranium μ‐phosphido complex [{U(TrenTIPS)}2(μ‐P)][K(B15C5)2] ( 4 ). Alternatively, reaction of [U(TrenTIPS)(PH)][Na(12C4)2] ( 5 , 12C4=12‐crown‐4 ether) with [U{N(CH2CH2NSiMe2But)2CH2CH2NSi(Me)(CH2)(But)}] ( 6 ) produced the diuranium μ‐phosphido complex [{U(TrenTIPS)}(μ‐P){U(TrenDMBS)}][Na(12C4)2] [ 7 , TrenDMBS=N(CH2CH2NSiMe2But)3]. Compounds 4 and 7 are unprecedented examples of uranium phosphido complexes outside of matrix isolation studies, and they rapidly decompose in solution underscoring the paucity of uranium phosphido complexes. Interestingly, 4 and 7 feature symmetric and asymmetric UPU cores, respectively, reflecting their differing steric profiles.  相似文献   

13.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XVIII. Syntheses and Structures of [{η2tBu2P–P=P–PtBu2}Pt(PR3)2] tBu2P–P=P(Me)tBu2 reacts with [{η2‐C2H4} · Pt(PR3)2] as well as with [{η2tBu2P–P}Pt(PR3)2] yielding [{η2tBu2P–P=P–PtBu2}Pt(PR3)2]; PR3 = PMe3 3 a , PEtPh2 3 b , 1/2 dppe 3 c , PPh3 3 d , P(p‐Tol)3 3 e . All compounds are characterized by 1H and 31P NMR spectra, for 3 b and 3 d also crystal structure determinations were performed. 3 b crystallizes in the triclinic space group P1 (No. 2) with a = 1212.58(7), b = 1430.74(8), c = 1629.34(11) pm, α = 77.321(6), β = 70.469(5), γ = 87.312(6)°. 3 d crystallizes in the triclinic space group P1 (No. 2) with a = 1122.60(9), b = 1355.88(11), c = 2025.11(14) pm, α = 83.824(9), β = 82.498(9), γ = 67.214(8)°.  相似文献   

14.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XX Formation and Structure of [{η2tBu2P–P}Pt(PHtBu2)(PPh3)] [{η2tBu2P1–P2}Pt(P3Ph3)(P4Ph3)] ( 2 ) reacts with tBu2PH exchanging only the P3Ph3 group to give [{η2tBu2P1–P2}Pt(P3HtBu2)(P4Ph3)] ( 1 ). The crystal stucture determination of 1 together with its 31P{1H} NMR data allow for an unequivocal assignment of the coupling constants in related Pt complexes. 1 crystallizes in the triclinic space group P1 (no. 2) with a = 1030.33(15), b = 1244.46(19), c = 1604.1(3) pm, α = 86.565(17)°, β = 80.344(18)°, γ = 74.729(17)°.  相似文献   

15.
Pincer‐type palladium complexes are among the most active Heck catalysts. Due to their exceptionally high thermal stability and the fact that they contain PdII centers, controversial PdII/PdIV cycles have been often proposed as potential catalytic mechanisms. However, pincer‐type PdIV intermediates have never been experimentally observed, and computational studies to support the proposed PdII/PdIV mechanisms with pincer‐type catalysts have never been carried out. In this computational study the feasibility of potential catalytic cycles involving PdIV intermediates was explored. Density functional calculations were performed on experimentally applied aminophosphine‐, phosphine‐, and phosphite‐based pincer‐type Heck catalysts with styrene and phenyl bromide as substrates and (E)‐stilbene as coupling product. The potential‐energy surfaces were calculated in dimethylformamide (DMF) as solvent and demonstrate that PdII/PdIV mechanisms are thermally accessible and thus a true alternative to formation of palladium nanoparticles. Initial reaction steps of the lowest energy path of the catalytic cycle of the Heck reaction include dissociation of the chloride ligands from the neutral pincer complexes [{2,6‐C6H3(XPR2)2}Pd(Cl)] [X=NH, R=piperidinyl ( 1 a ); X=O, R=piperidinyl ( 1 b ); X=O, R=iPr ( 1 c ); X=CH2, R=iPr ( 1 d )] to yield cationic, three‐coordinate, T‐shaped 14e? palladium intermediates of type [{2,6‐C6H3(XPR2)2}Pd]+ ( 2 ). An alternative reaction path to generate complexes of type 2 (relevant for electron‐poor pincer complexes) includes initial coordination of styrene to 1 to yield styrene adducts [{2,6‐C6H3(XPR2)2}Pd(Cl)(CH2?CHPh)] ( 4 ) and consecutive dissociation of the chloride ligand to yield cationic square‐planar styrene complexes [{2,6‐C6H3(XPR2)2}Pd(CH2?CHPh)]+ ( 6 ) and styrene. Cationic styrene adducts of type 6 were additionally found to be the resting states of the catalytic reaction. However, oxidative addition of phenyl bromide to 2 result in pentacoordinate PdIV complexes of type [{2,6‐C6H3(XPR2)2}Pd(Br)(C6H5)]+ ( 11 ), which subsequently coordinate styrene (in trans position relative to the phenyl unit of the pincer cores) to yield hexacoordinate phenyl styrene complexes [{2,6‐C6H3(XPR2)2}Pd(Br)(C6H5)(CH2?CHPh)]+ ( 12 ). Migration of the phenyl ligand to the olefinic bond gives cationic, pentacoordinate phenylethenyl complexes [{2,6‐C6H3(XPR2)2}Pd(Br)(CHPhCH2Ph)]+ ( 13 ). Subsequent β‐hydride elimination induces direct HBr liberation to yield cationic, square‐planar (E)‐stilbene complexes with general formula [{2,6‐C6H3(XPR2)2}Pd(CHPh?CHPh)]+ ( 14 ). Subsequent liberation of (E)‐stilbene closes the catalytic cycle.  相似文献   

16.
Complexes [{Ru(CO)Cl(PiPr3)2}2(μ‐2,5‐(CH?CH)2cC4H2E] (E=NR; R=C6H4‐4‐NMe2 ( 10 a ), C6H4‐4‐OMe ( 10 b ), C6H4‐4‐Me ( 10 c ), C6H5 ( 10 d ), C6H4‐4‐CO2Et ( 10 e ), C6H4‐4‐NO2 ( 10 f ), C6H3‐3,5‐(CF3)2 ( 10 g ), CH3 ( 11 ); E=O ( 12 ), S ( 13 )) are discussed. The solid state structures of four alkynes and two complexes are reported. (Spectro)electrochemical studies show a moderate influence of the nature of the heteroatom and the electron‐donating or ‐withdrawing substituents R in 10 a – g on the electrochemical and spectroscopic properties. The CVs display two consecutive one‐electron redox events with ΔE°′=350–495 mV. A linear relationship between ΔE°′ and the σp Hammett constant for 10 a–f was found. IR, UV/Vis/NIR and EPR studies for 10 +– 13 + confirm full charge delocalization over the {Ru}CH?CH‐heterocycle‐CH?CH{Ru} backbone, classifying them as Class III systems according to the Robin and Day classification. DFT‐optimized structures of the neutral complexes agree well with the experimental ones and provide insight into the structural consequences of stepwise oxidations.  相似文献   

17.
The reaction of 2,4‐diferrocenyl‐1,3‐dithiadiphosphetane 2,4‐disulfide [FcPS(μ‐S)]2 [Fc = Fe(η5‐C5H4)(η5‐C5H5)] with alcohols ROH gave the corresponding ferrocenyldithiophosphonic acids [FcPS(OR)(SH)], which were treated in situ with Ni(CH3COO)2·4H2O in acetic acid to yield the square‐planar heterobimetallic trinuclear complexes [{FcP(OR)S2}2Ni] (R = Me ( 1 ), Et ( 2 ), Pri ( 3 ), Bus ( 4 ) and Bui ( 5 )). Compounds 1‐5 were characterized by elemental analysis, MS, NMR (1H, 13C and 31P), IR spectroscopy, and 2‐5 also by X‐ray crystallography. Cyclovoltammetric studies on the heterobimetallic nickel(II) complexes 1‐5 showed irreversible reduction to unstable nickel(I) complexes and an irreversible two‐electron oxidation of the sulfur‐containing nickel fragments, followed by a reversible one‐electron oxidation of the two ferrocenyl groups.  相似文献   

18.
Chemistry of Dimesityl Iron. X. Mesityl Iron Complexes [FeMes(X)]2 with a Central {Fe2(μ-Mes)2} Unit (Mes = C6H2-2,4,6-(CH3)3) Dimeric complexes [{MesFe(OAryl)}2] with coordination number (CN) of 3 are obtained from Fe2Mes4 1 by partial acidolyses with 2,6-di-tert-butyl-substituted phenols (HOAryl). 1 reacts with 1,3-diketones in a molar ratio of 1:2 to [{MesFe(diketonate)}2] with CN 4. A central {Fe2(μ-Mes)2}-unit with short Fe—Fe distances of 2.56 to 2.63 Å ( 1: 2.615 Å) is found in both types of complexes. The mixed ligand complexes react with an excess of phenol or diketone to {Fe(OAryl)2} or {Fe(diketonate)2}, respectively. 1 reacts with HOAryl in the molar ratio of 1:1 to [Fe2(μ-Mes)2Mes(OAryl)]. The structures of [Fe2(μ-Mes)2(OC6H2-2,6-tBu2-4-CH3)2] ( 3 ), [Fe2(μ-Mes)2Mes(OC6H2-2,4,6-tBu3)] ( 5 ) and [Fe2(μ-Mes)2{(tBuCO)2CH}2] ( 9 ) are presented.  相似文献   

19.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XVII [1] [Co(g5‐Me5C5)(g3tBu2PPCH–CH3)] from [Co(g5‐Me5C5)(g2‐C2H4)2] and tBu2P–P=P(Me)tBu2 [Co(η5‐Me5C5)(η3tBu2PPCH–CH3)] 1 is formed in the reaction of [Co(η5‐Me5C5)(η2‐C2H4)2] 2 with tBu2P–P 4 (generated from tBu2P–P=P(Me)tBu2 3 ) by elimination of one C2H4 ligand and coupling of the phosphinophosphinidene with the second one. The structure of 1 is proven by 31P, 13C, 1H NMR spectra and the X‐ray structure analysis. Within the ligand tBu2P1P2C1H–CH3 in 1 , the angle P1–P2–C1 amounts to 90°. The Co, P1, P2, C1 atoms in 1 look like a „butterfly”︁. The reaction of 2 with a mixture of tBu2P–P=P(Me)tBu2 3 and tBu–C?P 5 yields [Co(η5‐Me5C5){η4‐(tBuCP)2}] 6 and 1 . While 6 is spontaneously formed, 1 appears only after complete consumption of 5 .  相似文献   

20.
Some new phosphoramidates were synthesized and characterized by 1H, 13C, 31P NMR, IR spectroscopy and elemental analysis. The structures of CF3C(O)N(H)P(O)[N(CH3)(CH2C6H5)]2 ( 1 ) and 4‐NO2‐C6H4N(H)P(O)[4‐CH3‐NC5H9]2 ( 6 ) were confirmed by X‐ray single crystal determination. Compound 1 forms a centrosymmetric dimer and compound 6 forms a polymeric zigzag chain, both via ‐N‐H…O=P‐ intermolecular hydrogen bonds. Also, weak C‐H…F and C‐H…O hydrogen bonds were observed in compounds 1 and 6 , respectively. 13C NMR spectra were used for study of 2J(P,C) and 3J(P,C) coupling constants that were showed in the molecules containing N(C2H5)2 and N(C2H5)(CH2C6H5) moieties, 2J(P,C)>3J(P,C). A contrast result was obtained for the compounds involving a five‐membered ring aliphatic amine group, NC4H8. 2J(P,C) for N(C2H5)2 moiety and in NC4H8 are nearly the same, but 3J(P, C) values are larger than those in molecules with a pyrrolidinyl ring. This comparison was done for compounds with six and seven‐membered ring amine groups. In compounds with formula XP(O)[N(CH2R)(CH2C6H5)]2, 2J(P,CH2)benzylic>2J(P,CH2)aliphatic, in an agreement with our previous study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号