首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Diglycidyl ether of bisphenol A (DGEBA) was cured with γ‐butyrolactone (γ‐BL) with ytterbium triflate as a catalyst. The curing was studied with differential scanning calorimetry, Fourier transform infrared (FTIR), and thermomechanical analysis. FTIR studies confirmed that four elemental reactions took place during the curing process: the formation of a spiroorthoester (SOE) by the reaction of DGEBA with γ‐BL, the homopolymerization of SOE, the homopolymerization of DGEBA, and the copolymerization of SOE and DGEBA. Moderate proportions of γ‐BL produced materials with higher glass‐transition temperatures, and the curing occurred with lower shrinkage after gelation because of the polymerization of SOE, with near‐zero shrinkage during the final stages of the curing. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2794–2808, 2003  相似文献   

2.
Diglycidyl ether of bisphenol A was cured with different proportions of γ‐caprolactone with ytterbium triflate as an initiator. The curing was studied by means of differential scanning calorimetry and Fourier transform infrared in the attenuated total reflection mode. The latter was used to monitor the competitive reactive processes and to quantify the conversions of the epoxide, lactone, and intermediate spiroorthoester groups. A partial depolymerization process from the cured material to free γ‐caprolactone was also identified. The formation of a stable carbocation and the coordinative capability of ytterbium triflate were the reasons for this unexpected process. The thermal and dynamic mechanical properties of the cured materials were determined with differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical thermal analysis. An increase in the proportion of γ‐caprolactone resulted in an increased curing rate, a decrease in the shrinkage after gelation, and a significant decrease in the glass transition temperature. The introduction of ester linkages into the three‐dimensional structure led to more thermally degradable thermosets. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1968–1979, 2007  相似文献   

3.
Diglycidylether of bisphenol A (DGEBA) was cured with γ‐butyrolactone (γ‐BL) using different lanthanide triflates as catalysts. Fourier transform infrared spectroscopy was used to study the different evolutions of the four elemental processes that took place during curing with lanthanum and ytterbium triflates. The greatest differences among the lanthanides were in oxophilicity and Lewis acidity. Differences in the coordination ability of the metal to the monomers were shown and according to the Pearson theory, were related to their different characteristics. Differences in the reactivity of the systems were related to the differences in the Lewis acidity of the initiators. The evolution of the contraction during curing using different lanthanide triflates was monitored by thermomechanical analysis. All systems showed that contraction took place in two stages and that there was an intermediate region, associated with gelation, with no contraction. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3782–3791, 2004  相似文献   

4.
3,4‐Epoxycyclohexylmethyl 3,4‐epoxycyclohexane carboxylate was cured with different proportions of γ‐butyrolactone with lanthanum, samarium, and ytterbium triflates as catalysts. The curing was studied with differential scanning calorimetry (DSC) and Fourier transform infrared in the attenuated‐total‐reflection mode (FTIR/ATR). FTIR/ATR was used to monitor the competitive reactive processes and to quantify the evolution of the epoxide, lactone, and intermediate spiroorthoester groups. The glass‐transition temperature of the crosslinked materials was high and increased when the proportion of lactone decreased. The kinetics were studied with DSC experiments and were analyzed with isoconversional procedures. The differences in the reactivities of the systems were related to the Lewis acidity of the lanthanide salt used as the initiator. An increase in the proportion of lactone produced an increase in the reaction rate. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2337‐2347, 2005  相似文献   

5.
A new bis‐spiroorthoester‐containing monomer, bis[(1,4,6‐trioxaspiro‐[4.4]‐nonan‐2‐yl)‐methyl] 2‐[10‐(9,10‐dihydro‐9‐oxa‐10‐phosphaphenantrene‐10‐oxide‐10‐yl)] maleate (SOE‐DOPOMA), was synthesized with good yields by an esterification reaction with a hydroxylated spiroorthoester (2‐hydroxymethyl‐1,4,6‐trioxaspiro‐[4.4]‐nonane) and a phosphorus‐containing diacid {2‐[10‐(9,10‐dihydro‐9‐oxa‐10‐phosphaphenantrene‐10‐ oxide‐10‐yl)] maleic acid}, both of which were previously synthesized. SOE‐DOPOMA was characterized with 1H, 13C, and 31P NMR spectroscopy. This new spiroorthoester was crosslinked with ytterbium triflate as a cationic initiator. A mixture of SOE‐DOPOMA and diglycidyl ether of bisphenol A was also crosslinked under the same conditions. The curing was studied with differential scanning calorimetry and monitored with Fourier transform infrared spectroscopy. The materials were characterized with differential scanning calorimetry, thermogravimetric analysis, and thermodynamomechanical analysis. The shrinkage effect on cationic crosslinking was assessed with gas pycnometry, and the flame‐retardant properties were determined with limiting oxygen index measurements. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1980–1992, 2007.  相似文献   

6.
A new silicon‐containing spiroorthoester, 1,4,6‐trioxaspiro [4,4]‐2‐nonylmethyl 3‐trimethylsilyl propionate (SOE? Si), was synthesized with good yield by an esterification reaction with a previously synthesized 2‐hydroxymethyl‐1,4,6‐trioxaspiro [4,4] nonane (SOE? OH) and trimethylsilyl propionic acid. The structure of the new SOE? Si was confirmed by 1H and 3C NMR. The SOE? Si and a mixture of DGEBA/SOE? Si were polymerized with ytterbium triflate as a cationic initiator. The curing was studied with differential scanning calorimetry (DSC) and monitored by Fourier transform infrared (FTIR) spectroscopy. The materials were characterized with DSC, termogravimetric analysis (TGA) and thermodynamomechanical analysis (DMTA). The volume change was evaluated with a Micromeritics gas pycnometer and the flame retardancy was tested by the limiting oxygen index (LOI) measurements. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4211–4224, 2007  相似文献   

7.
Scandium, ytterbium, and lanthanum triflates and boron trifluoride monoethylamine were used as cationic initiators to cure a mixture 2:1 (mol/mol) of diglycidylether of bisphenol A (DGEBA) and 7,7‐dimethyl‐6,8‐dioxaspiro[3.5]nonane‐5,9‐dione (MCB). The evolution of the epoxy and lactone during curing and the linear ester groups in the final materials were evaluated by Fourier Transform Infrared in the attenuated‐total‐reflection mode. The kinetic parameters of the curing process were calculated from DSC analysis applying isoconversional procedures. The shrinkage on curing and the thermal degradability of the materials on varying the initiator used were evaluated. The expandable character of MCB was confirmed. The materials obtained were more degradable than conventional epoxy resins due to the tertiary ester groups incorporated in the network by copolymerization. © 2008 Wiley Periodicals, Inc J Polym Sci Part A: Polym Chem 46: 1229–1239, 2008  相似文献   

8.
Ytterbium and lanthanum triflates were used as initiators to cure a mixture of diglycidylether of bisphenol A (DGEBA) and 5,5‐dimethyl‐1,3‐dioxane‐2‐one (DMTMC). The evolution of the curing was studied by differential scanning calorimetry (DSC) and Fourier transform infrared in the attenuated‐total‐reflection mode (FTIR/ATR). FTIR/ATR was used to monitor the competitive reactive processes and to quantify the evolution of the groups involved in the curing process. We observed the formation of a five‐membered cyclic carbonate, which remains unreacted at the chain ends because of an equilibrium process between the spiroortho carbonates that had formed as intermediate species and also the loss of CO2, which was quantified by thermogravimetry. The kinetics were studied by DSC and analyzed by isoconversional procedures. Thermogravimetric analysis (TGA) and dynamic mechanical thermal analysis (DMTA) experiments were used to evaluate the properties of the thermosets obtained. The phenomenological changes that take place during curing were studied and represented in a time‐temperature‐transformation (TTT) diagram. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4546–4558, 2006  相似文献   

9.
Crystalline thermosetting blends composed of 2,2′‐bis[4‐(4‐aminophenoxy)phenyl]propane (BAPP)‐cured epoxy resin (ER) and poly(?‐caprolactone) (PCL) were prepared via the in situ curing reaction of epoxy monomers in the presence of PCL, which started from initially homogeneous mixtures of diglycidyl ether of bisphenol A (DGEBA), BAPP, and PCL. The miscibility of the blends after and before the curing reaction was established with differential scanning calorimetry and dynamic mechanical analysis. Single and composition‐dependent glass‐transition temperatures (Tg's) were observed in the entire blend composition after and before the crosslinking reaction. The experimental Tg's were in good agreement with the prediction by the Fox and Gordon–Taylor equations. The curing reaction caused a considerable increase in the overall crystallization rate and dramatically influenced the mechanism of nucleation and the growth of the PCL crystals. The equilibrium melting point depression was observed for the blends. An analysis of the kinetic data according to the Hoffman–Lauritzen crystallization kinetic theory showed that with an increasing amorphous content, the surface energy of the extremity surfaces increased dramatically for DGEBA/PCL blends but decreased for ER/PCL blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1085–1098, 2003  相似文献   

10.
Bis(m‐aminophenyl)methylphosphine oxide based benzoxazine (Bz‐BAMPO) was obtained using a three‐step synthetic method from the aromatic diamine and 2‐hydroxybenzaldehyde as starting materials. The structure and purity of the monomer was confirmed by elemental analysis, FTIR, 1H NMR, 13C NMR and 31P NMR spectra. The curing kinetics of Bz‐BAMPO was investigated by nonisothermal differential scanning calorimetry (DSC) at different heating rates and by FTIR spectroscopy. The isoconversional method was used to evaluate the dependence of the effective activation energy on the extent of conversion. The evolving factor analysis (EFA) method was applied to the spectroscopic FTIR data obtained in monitoring benzoxazine homopolymerizations. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7162–7172, 2008  相似文献   

11.
Biodegradable polyester resins were prepared via photo crosslinking of functional polyesters obtained by copolymerization of ε‐caprolactone and the functional cyclic esters γ‐acryloyloxy‐ε‐caprolactone (ACL) and γ‐methacryloyloxy‐ε‐caprolactone (MCL). The cyclic esters were prepared via Baeyer‐Villiger oxidation of the corresponding 4‐acyloyloxy‐cyclohexanone derivatives. Copolymers with different content of either acryloyloxy or methacryloyloxy functional groups were prepared via catalyzed ring‐opening polymerization (ROP) of γ‐acyloyloxy‐ε‐caprolactones and ε‐caprolactone using Al(OiPr)3 as catalyst and initiator. 2D‐ and 3D‐micropatterning of the copolymers was performed via UV‐crosslinking of polymer films on a suitable substrate and by UV replica molding on both rigid and elastic masters, showing the processability of these novel functional polyesters and their potential as substrates for biomedical devices. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6789–6800, 2008  相似文献   

12.
The NCAs of the following five amino acids were polymerized in bulk at 120 °C without addition of a catalyst or initiator: sarcosine (Sar), L ‐alanine (L ‐Ala), D ,L ‐phenylalanine (D ,L ‐Phe), D ,L ‐leucine (D ,L ‐Leu) and D ,L ‐valine (D,L ‐Val). The virgin reaction products were characterized by viscosity measurements 13C NMR spectroscopy and MALDI‐TOF mass spectrometry. In addition to numerous low molar mass byproducts cyclic polypeptides were formed as the main reaction products in the mass range above 800 Da. Two types of cyclic oligo‐ and polypeptides were detected in all cases with exception of sarcosine NCA, which only yielded one class of cyclic polypeptides. The efficient formation of cyclic oligo‐ and polypeptides explains why high molar mass polymers cannot be obtained by thermal polymerizations of α‐amino acid NCAs. Various polymerization mechanisms were discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4012–4020, 2008  相似文献   

13.
The kinetics of free‐radical emulsion polymerization of γ‐methyl‐α‐methylene‐γ‐butyrolactone (MeMBL), a renewable monomer related to methyl methacrylate, are presented in detail for the first time, and stable polymer latices are prepared. The effects of different reaction parameters on free‐radical emulsion polymerization of MeMBL are presented. Homogeneous nucleation is asserted to be the dominant path for particle formation. Miniemulsion copolymerization of MeMBL and styrene is also reported. In this case, the homogeneous nucleation process appears limited when using an oil soluble initiator. Both the RAFT miniemulsion polymerizations and RAFT bulk polymerizations are well controlled and narrow polydispersity copolymers are produced. Rate retardation is observed in the RAFT miniemulsion polymerizations compared with the free‐radical polymerization and RAFT bulk polymerizations and the possible causes of the retardation are discussed. The reactivity ratios of MeMBL and styrene in RAFT bulk copolymerization are also determined. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5929–5944, 2008  相似文献   

14.
Host–guest interactions between α‐, β‐ and γ‐cyclodextrins and vanadocene dichloride (Cp2VCl2) have been investigated by a combination of thermogravimetric analysis, differential scanning calorimetry, powder X‐ray diffraction and solid‐state and solution electron paramagnetic resonance (EPR) spectroscopy. The solid‐state results demonstrated that only β‐ and γ‐cyclodextrins form 1:1 inclusion complexes, while α‐cyclodextrin does not form an inclusion complex with Cp2VCl2. The β‐ and γ‐CD–Cp2VCl2 inclusion complexes exhibited anisotropic electron‐51V (I = 7/2) hyperfine coupling constants whereas the α‐CD–Cp2VCl2 system showed only an asymmetric peak with no anisotropic hyperfine constant. On the other hand, solution EPR spectroscopy showed that α‐cyclodextrin (α‐CD) may be involved in weak host–guest interactions in equilibrium with free vanadocene species. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The crystallization behavior of long‐chain branched (LCB) polypropylene (PP) in the supercritical carbon dioxide (scCO2) atmosphere was investigated to show the influences of LCB and CO2 on the formation of γ‐crystal. The crystallization experiments were performed in CO2 atmosphere with the pressure from 1.3 to 10.4 MPa and temperature between 90 and 130 °C. The effects of LCB level, CO2 pressure, and crystallization temperature on the content of γ‐crystal were investigated. The results showed that the influence of LCB on the formation of γ‐crystal was obvious when PP was crystallized in CO2. The content of γ‐crystal increased with LCB level and reached a maximum of 88.2%. It could be explained that, as LCB increased the chainfolding energy of PP molecular chain and hindered it from folding back into crystal lamella, which made the formation of γ‐crystal easier. However, CO2 was the key factor in the formation of γ‐crystal, and the influence of CO2 on γ‐crystal was much significant than that of LCB. It was believed that the increase of free volume after dissolving of CO2 in PP was helpful in the formation of γ‐crystal. It was found that the content of γ‐crystal increased almost linearly with CO2 pressure (CO2 content), and the contribution of CO2 to γ‐crystal increased with pressure, while that of LCB increased with temperature. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 441–451, 2008  相似文献   

16.
Mixtures of DGEBA with γ-valerolactone (γ-VL) or α-methyl-γ-butyrolactone (γ-MBL) 2:1 (mol/mol) were cationically copolymerized in the presence of scandium, ytterbium, or lanthanum triflates as initiators. The evolution of the different reactive groups was followed by means of FTIR/ATR spectroscopy. From these experiments, we could detect the coexistence of two unexpected processes: a reversion of the intermediate spiroorthoester formed to the initial products and a depolymerization process, which only takes place in samples with γ-VL, when scandium triflate was used as initiator or when the proportion of ytterbium triflate was increased from 1 to 3 phr. When γ-MBL was used as comonomer no depolymerization occurs which supports the proposed mechanism. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2129–2141, 2007  相似文献   

17.
The catalytic effects of 1,5,7‐Triazabicyclo[4.4.0]dec‐5‐ene (TBD) with 2‐methylimidazole‐intercalated α‐zirconium phosphate (α‐ZrP?2MIm) in the reaction of glycidyl phenyl ether (GPE) and hexahydro‐4‐methylphthalic anhydride (MHHPA) were investigated. The reaction did not proceed within 1 h at 60 °C. On increasing the temperature to 100 °C, the conversion reached 93% for 1 h. Without the addition of TBD, the conversion was 67% at 100 °C for 1 h. Under storage conditions at 25 °C for 7 days, the conversion of GPE was only 18%. The curing behavior of 2,2‐bis(4‐glycidyloxyphenyl)propane (DGEBA) and MHHPA in the presence of TBD with α‐ZrP?2MIm was evaluated by differential scanning calorimetry. The addition of TBD with α‐ZrP?2MIm as a latent thermal initiator, the storage stability was maintained and the reaction proceeded rapidly under heating conditions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2557–2561  相似文献   

18.
The synthesis of 3‐allyloxymethyl‐3‐ethyloxetane (AllylEHO) and its polymerization with BF3 × Et2O is described in this study. Size exclusion chromatography (SEC) and membrane osmometry are used for the determination of molecular weights of the obtained products, ranging from Mn,SEC = 41,500‐131,500 g/mol. 1H NMR spectroscopy, SEC, as well as MALDI‐TOF MS reveal the formation of cyclic tetramer beside low, but detectable concentrations of larger cyclic oligomers as by‐products during the polymerization process. These results help to understand mechanistically why attempts for a controlled homopolymerization of AllylEHO fail and why a controlled homopolymerization of oxetanes has not been described so far in the literature. Additionally, the high versatility of allyl‐functional polyoxetane for postpolymerization modification is proven by thiol–ene reactions with 3‐mercaptopropionic acid and N‐acetyl‐L ‐cysteine methyl ester. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

19.
Two flame‐retardant epoxy curing agents, 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐yl‐tris(4‐hydroxyphenyl)methane (1) and 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐yl‐ (4‐aminophenyl)‐bis(4‐hydroxyphenyl)methane (2), were prepared by a facile, economic, one‐pot procedure. The structures of the curing agents were confirmed by IR, high‐resolution mass, 1‐D, and 2‐D NMR spectra. A reaction mechanism was proposed for the preparation, and the effect of electron withdrawing/donating effects on the stabilization of the carbocation was discussed. (1‐2) served as curing agents for diglycidyl ether of bisphenol A (DGEBA), dicyclopentadiene epoxy (HP‐7200), and cresol novolac epoxy (CNE). Properties such as glass transition temperature, coefficient of thermal expansion, thermal decomposition temperature, and flame retardancy of the resulting epoxy thermosets were evaluated. The resulting epoxy thermosets show high Tg, low thermal expansion, moderate thermostability, and excellent flame retardancy. The bulky biphenylene phosphinate pendant makes polymer chains difficult to rotate, explaining the high Tg and low thermal expansion characteristic. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7898–7912, 2008  相似文献   

20.
Novel 5‐Z‐amino‐δ‐valerolactone (5‐NHZ‐VL) was synthesized with an aim to prepare degradable polyesters and copolyesters having amino pendant groups. Following a straightforward and efficient synthetic pathway, 5‐NHZ‐VL was obtained in only two steps and up to 50% yield. The monomer was fully characterized by 1H NMR, 13C NMR, ESI mass spectrometry, and HPLC. Various conventional conditions were tested for this lactone ring‐opening polymerization and led to the novel corresponding poly(5‐NHZ‐VL) (Mn = 7000 g/mol; PD = 1.2). Following this homopolymerization, 5‐NHZ‐VL was copolymerized with ε‐caprolactone to generate a family of copolyesters with an amino‐group content ranging from 10 to 80%. Finally, the polyelectrolyte poly(5‐NH3+‐VL) was recovered by removal of the protecting group under acidic conditions, and integrity of the polyester backbone was confirmed by 1H NMR. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号