首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
>From Small Fragments to New Poly‐alkoxo‐oxo‐metalate Derivatives: Syntheses and Crystal Structures of K4[VIV12O12(OCH3)16(C4O4)6], Cs10[VIV24O24(OCH3)32(C4O4)12][VIV8O8(OCH3)16(C2O4)], and M2[VIV8O8(OCH3)16(VIVOF4)] (M = [N(nBu)4] or [NEt4]) By solvothermal reaction of ortho‐vanadicacid ester [VO(OMe)3] with squaric acid and potassium or caesium hydroxide the compounds K4[VIV12O12(OCH3)16(C4O4)6] ( 2 ) and Cs10[VIV24O24(OCH3)32(C4O4)12][VIV8O8(OCH3)16(C2O4)] ( 3 ) could be syntesized. With tetra‐n‐butyl‐ or tetra‐n‐ethylammonium fluoride [N(nBu)4]2[VIV8O8(OCH3)16(VIVOF4)] ( 4 ) and [N(Et)4]2[VIV8O8(OCH3)16(VIVOF4)] ( 5 ) could be isolated. In 2 and 3 the corners of a tetrahedron or cube resp. are occupied by {(VO)3(OMe)4} groups and connected along the edges of the tetrahedron resp. cube by six or twelve resp. squarato‐groups. The octanuclear anions in the compounds 3 , 4 , and 5 are assumedly built up by fragments of the ortho‐vanadicacid ester [VO(OMe)3]. Around the anions C2O42— or VOF4 these oligormeric chains are closed to a ring . Crystal data: 2 , tetragonal, P43, a = 18.166(3)Å, c = 29.165(7)Å, V = 9625(3)Å3, Z = 4, dc = 1.469 gcm—3; 3 , orthorhombic, Pbca, a = 29.493(5)Å, b = 25.564(4)Å, c = 31.076Å, V = 23430(6)Å3, Z = 4, dc = 1.892 gcm—3; 4 , monoclinic, P21/n, a = 9.528(1)Å, b = 23.021(2)Å, c = 19.303(2)Å, β = 92.570(2)°, V = 4229.8(5)Å3, Z = 2, dc = 1.391 gcm—3; 5 , monoclinic, P21/n, a = 16.451(2)Å, b = 8.806(1)Å, c = 23.812(1)Å, β = 102.423(2)°, V = 3368.7(6)Å3, Z = 2, dc = 1.534 gcm—3.  相似文献   

3.
A 1-D ladder-like aggregate, K2Na6[Na(H2O)Fe2(H2O)8(P5W30O110)] · 23.5H2O (1; K2Na6[1a] · 23.5H2O) has been obtained by conventional aqueous solution reaction. X-ray diffraction analysis reveals that 1 crystallizes in the monoclinic system, space group P 2 1 /m, a = 16.938(3) Å, b = 21.396(4) Å, c = 17.520(4) Å, β = 98.14(3)°, V = 6285(2) Å3, and Z = 2. Polyoxoanion 1a shows a 1-D ladder-like chain, built up of Preyssler anion and Fe3+ linkers, which represents the first extended structure based on Preyssler anion and transition metal linkers. The 1-D chains in 1 are further connected into a 3-D open framework by potassium and sodium cations. Compound 1 displays electrocatalytic activity towards the reduction of nitrite.  相似文献   

4.
Alcoholysis of [Fe2(OtBu)6] as a Simple Route to New Iron(III)‐Alkoxo Compounds: Synthesis and Crystal Structures of [Fe2(OtAmyl)6], [Fe5OCl(OiPr)12], [Fe5O(OiPr)13], [Fe5O(OiBu)13], [Fe5O(OCH2CF3)13], [Fe5O(OnPr)13], and [Fe9O3(OnPr)21] · nPrOH New alkoxo‐iron compounds can be synthesized easily by alcoholysis of [Fe2(OtBu)6] ( 1 ). Due to different bulkyness of the alcohols used, three different structure types are formed: [Fe2(OR)6], [Fe5O(OR)13] and [Fe9O3(OR)21] · ROH. We report synthesis and crystal structures of the compounds [Fe5OCl(OiPr)12] ( 2 ), [Fe2(OtAmyl)6] ( 3 ), [Fe5O(OiPr)13] ( 4 ), [Fe5O(OiBu)13] ( 5 ), [Fe5O(OCH2CF3)13] ( 6 ), [Fe9O3(OnPr)21] · nPrOH ( 7 ) and [Fe5O(OnPr)13] ( 8 ). Crystallographic Data: 2 , tetragonal, P 4/n, a = 16.070(5) Å, c = 9.831(5) Å, V = 2539(2) Å3, Z = 2, dc = 1.360 gcm?3, R1 = 0.0636; 3 , monoclinic, P 21/c, a = 10.591(5) Å, b = 10.654(4) Å, c = 16.740(7) Å, β = 104.87(2)°, V = 1826(2) Å3, Z = 2, dc = 1.154 gcm?3, R1 = 0.0756; 4 , triclinic, , a = 20.640(3) Å, b = 21.383(3) Å, c = 21.537(3) Å, α = 82.37(1)°, β = 73.15(1)°, γ = 61.75(1)°, V = 8013(2) Å3, Z = 6, dc = 1.322 gcm?3, R1 = 0.0412; 5 , tetragonal, P 4cc, a = 13.612(5) Å, c = 36.853(5) Å, V = 6828(4) Å3, Z = 4, dc = 1.079 gcm?3, R1 = 0.0609; 6 , triclinic, , a = 12.039(2) Å, b = 12.673(3) Å, c = 19.600(4) Å, α = 93.60(1)°, β = 97.02(1)°, γ = 117.83(1)°, V = 2600(2) Å3, Z = 2, dc = 2.022 gcm?3, R1 = 0.0585; 7 , triclinic, , a = 12.989(3) Å, b = 16.750(4) Å, c = 21.644(5) Å, α = 84.69(1)°, β = 86.20(1)°, γ = 77.68(1)°, V = 4576(2) Å3, Z = 2, dc = 1.344 gcm?3, R1 = 0.0778; 8 , triclinic, , a = 12.597(5) Å, b = 12.764(5) Å, c = 16.727(7) Å, α = 91.94(1)°, β = 95.61(1)°, γ = 93.24(2)°, V = 2670(2) Å3, Z = 2, dc = 1.323 gcm?3, R1 = 0.0594.  相似文献   

5.
Grown from aqueous solution, 1-methyl-6-O-p-toluenesulfonyl-alpha-D-glucopyranoside dihydrate is monoclinic, space group P21, a = 6.6236(4), b = 6.4708(4), c = 20.1758(11) Å; β = 92.836(2)°; Z = 2; V = 863.68(9) Å3. The molecules are interconnected in the solid state by O─H … O hydrogen bonds involving bridging water molecules.  相似文献   

6.
Two novel As‐V‐O cluster supported transition metal complexes, [Zn(en)2][Zn(en)2(H2O)2][{Zn(en)(enMe)}As6V15O42(H2O)]·4H2O ( 1 ) and [Zn2(enMe)2(en)3][{Zn(enMe)2}As6V15O42(H2O)]·4H2O ( 2 ), have been hydrothermally synthesized. The single X‐ray diffraction studies reveal that both compounds consist of discrete noncentral polyoxoanions [{Zn(en)(enMe)}As6V15O42(H2O)]4? or [{Zn(enMe)2}As6V15O42(H2O)]4? cocrystallized with respective zinc coordination complexes. Interestingly, compounds 1 and 2 exhibit the first two polyoxovanadates containing As8V15O42‐(H2O)]6? cluster decorated by only one transition metal complex. Crystal data: 1 , monoclinic, P21/n, a = 14.9037(4) Å, b = 18.1243(5) Å, c = 27.6103(7) Å, β = 105.376(6)°, Z = 4; 2 monoclinic, P21/n, a = 14.9786(7) Å, b = 33.0534(16) Å, c = 14.9811(5) Å, Z = 4.  相似文献   

7.

The title compound, K6.5H4.5[CeK2(SiW11O39)2]·26H2O was prepared and its structure characterized by IR and single crystal X-ray structural analysis. It belongs to triclinic, space group P1 with a = 12.719(3) Å, b = 16.658(4) Å, c = 23.075(6) Å, α = 94.41(2)°, β = 98.90(2)°, γ = 92.40(2)°; V = 4809(2) Å?3, Z = 2, Dc = 4.344 g cm?3, μ = 27.170 mm?1, F (000) = 5519. The results show that the cerium and two potassium atoms link the two anionic units SiW11O8? 39 through O-Ce-O and O-K-O bridges and construct the double 1 : 11 series heteropolytungstate. Furthermore, cerium is coordinated to eight oxygen atoms (four Oc and four Ob) from two tetradentate SiW11O8? 39 ligands forming a square anti-prism. The coordination numbers for K1 and K2 are 8 and 7, respectively.  相似文献   

8.
9.
Uranyl vanadate compounds with divalent cations, M(UO2)(V2O7) (M = Ca, Sr) and Sr3(UO2)(V2O7)2, were synthesized by flux crystal growth, and their crystal structures were solved using single‐crystal X‐ray diffraction data. Ca(UO2)V2O7 and Sr(UO2)V2O7 were synthesized from reactants with molar ratios M:U:V of 1:1:2 and identical heating conditions, and increasing the M:U:V ratio to 3:1:4 resulted in Sr3(UO2)(V2O7)2. Crystallographic data for M(UO2)V2O7 compounds are: a = 7.1774(18) Å, b = 6.7753(17) Å, c = 8.308(2) Å; V = 404.01(18) Å3; space group Pmn21, Z = 2 for Ca; a = 13.4816(11) Å, b = 7.3218(6) Å, c = 8.4886(7) Å; V = 837.91(12) Å3; space group Pnma, Z = 4 for Sr. Compound Sr3(UO2)(V2O7)2 has a = 6.891(3) Å, b = 7.171(3) Å, c = 14.696(6) Å, α = 85.201(4)?, β = 78.003(4)?, γ = 89.188(4)?; V = 707.9(5) Å3; space group P1 , Z = 2. The framework structure of Sr(UO2)(V2O7) is related to that of Pb(UO2)(V2O7) reported previously, while that of Ca(UO2)(V2O7) has a different topology. The topological polymorphism of the [(UO2)(V2O7)]‐type framework may be due to the differing ionic radii of the guest M2+ cations. Compound Sr3(UO2)(V2O7)2 has a modular structure based on two different types of electroneutral layers: [Sr(UO2)(V2O7)] and [Sr2(V2O7)]. Structural complexities were calculated, and Raman spectra were collected and their peaks were assigned.  相似文献   

10.
Conformation and Cross Linking of (CuCN)6‐Rings in Polymeric Cyanocuprates(I) equation/tex2gif-stack-8.gif [Cu2(CN)3] (n = 2, 3) The alkaline‐tricyano‐dicuprates(I) Rbequation/tex2gif-stack-9.gif[Cu2(CN)3] · H2O ( 1 ) and Csequation/tex2gif-stack-10.gif[Cu2(CN)3] · H2O ( 2 ) were synthesized by hydrothermal reaction of CuCN and RbCN or CsCN. The dialkylammonium‐tricyano‐dicuprates(I) [NH2(Me)2]equation/tex2gif-stack-11.gif[Cu2(CN)3] ( 3 ), [NH2(iPr)2]equation/tex2gif-stack-12.gif[Cu2(CN)3] ( 4 ), [NH2(Pr)2]equation/tex2gif-stack-13.gif[Cu2(CN)3] ( 5 ) and [NH2(secBu)2]equation/tex2gif-stack-14.gif[Cu2(CN)3] ( 6 ) were obtained by the reaction of dimethylamine, diisopropylamine, dipropylamine or di‐sec‐butylamine with CuCN and NaCN in the presence of formic acid. The crystal structures of these compounds are built up by (CuCN)6‐rings with varying conformations, which are connected to layers ( 1 ) or three‐dimensional zeolite type cyanocuprate(I) frameworks, depending on the size and shape of the cations ( 2 to 6 ). Crystal structure data: 1 , monoclinic, P21/c, a = 12.021(3)Å, b = 8.396(2)Å, c = 7.483(2)Å, β = 95.853(5)°, V = 751.4(3)Å3, Z = 4, dc = 2.728 gcm—1, R1 = 0.036; 2 , orthorhombic, Pbca, a = 8.760(2)Å, b = 6.781(2)Å, c = 27.113(5)Å, V = 1610.5(5)Å3, Z = 8, dc = 2.937 gcm—1, R1 = 0.028; 3 , orthorhombic, Pna21, a = 13.504(3)Å, b = 7.445(2)Å, c = 8.206(2)Å, V = 825.0(3)Å3, Z = 4, dc = 2.023 gcm—1, R1 = 0.022; 4 , orthorhombic, Pbca, a = 12.848(6)Å, b = 13.370(7)Å, c = 13.967(7)Å, V = 2399(2)Å3, Z = 8, dc = 1.702 gcm—1, R1 = 0.022; 5 , monoclinic, P21/n, a = 8.079(3)Å, b = 14.550(5)Å, c = 11.012(4)Å, β = 99.282(8)°, V = 1277.6(8)Å3, Z = 4, dc = 1.598 gcm—1, R1 = 0.039; 6 , monoclinic, P21/c, a = 16.215(4)Å, b = 13.977(4)Å, c = 14.176(4)Å, β = 114.555(5)°, V = 2922(2)Å3, Z = 8, dc = 1.525 gcm—1, R1 = 0.070.  相似文献   

11.
Three polymorphs of barium dihydrogen‐hypodiphosphate(IV)‐dihydrate, BaH2P2O6 · 2H2O ( A , B and C ), were obtained and structurally characterized by single‐crystal X‐ray diffraction. A crystallizes in the monoclinic space group P21/n (no. 14) with a = 7.459(1) Å, b = 8.066(1) Å, c = 12.460(2) Å, β = 91.27(1) ° and Z = 4. B crystallizes in the monoclinic space group C2/c (no. 15) with a = 11.049(8) Å, b = 6.486(3) Å, c = 10.956(6) Å, β = 106.89(5) ° and Z = 4. C crystallizes in the orthorhombic space group C2221 (no. 20) with a = 9.193(3) Å, b = 6.199(2) Å, c = 12.888(4) Å and Z = 4. Discrete [H2P2O6]2– units, barium cations and water molecules, held together by intermolecular hydrogen bonds of the type O–H ··· O, build up the structures of the three polymorphs. The phase purity of A and C was verified by powder diffraction measurements.  相似文献   

12.
Alkoxo Compounds of Iron(III): Syntheses and Characterization of [Fe2(OtBu)6], [Fe2Cl2(OtBu)4], [Fe2Cl4(OtBu)2] and [N(nBu)4]2[Fe6OCl6(OMe)12] The reaction of iron(III)chloride in diethylether with sodium tert‐butylat yielded the homoleptic dimeric tert‐‐butoxide Fe2(OtBu)6 ( 1 ). The chloro‐derivatives [Fe2Cl2(OtBu)4] ( 2 ), and [Fe2Cl4(OtBu)2] ( 3 ) could be synthesized by ligand exchange between 1 and iron(III)chloride. Each of the molecules 1 , 2 , and 3 consists of two edge‐sharing tetrahedrons, with two tert‐butoxo‐groups as μ2‐bridging ligands. For the synthesis of the alkoxides 1 , 2 , and 3 diethylether plays an important role. In the first step the dietherate of iron(III)chloride FeCl3(OEt2)2 ( 4 ) is formed. The reaction of iron(III)chloride with tetrabutylammonium methoxide in methanol results in the formation of a tetrabutylammonium methoxo‐chloro‐oxo‐hexairon cluster [N(nBu)4]2[Fe6OCl6(OMe)12] ( 5 ). Crystal structure data: 1 , triclinic, P1¯, a = 9.882(2) Å, b = 10.523(2) Å, c = 15.972(3) Å, α = 73.986(4)°, β = 88.713(4)°, γ = 87.145(4)°, V = 1594.4(5) Å3, Z = 2, dc = 1.146 gcm—1, R1 = 0.044; 2 , monoclinic, P21/n, a = 11.134(2) Å, b = 10.141(2) Å, c = 12.152(2) Å und β = 114.157(3)°, V = 1251.8(4) Å3, Z = 2, dc = 1.377 gcm—1, R1 = 0.0581; 3 , monoclinic, P21/n, a = 6.527(2) Å, b = 11.744(2) Å, c = 10.623(2), β = 96.644(3)°, V = 808.8(2) Å3, Z = 2, dc = 1.641 gcm—1, R1 = 0.0174; 4 , orthorhombic, Iba2, a = 23.266(5) Å, b = 9.541(2) Å, c = 12.867(3) Å, V = 2856(2) Å3, Z = 8, dc = 1.444 gcm—1, R1 = 0.0208; 5 , trigonal, P31, a = 13.945(2) Å, c = 30.011(6) Å, V = 5054(2) Å3, Z = 6, dc = 1.401 gcm—1; Rc = 0.0494.  相似文献   

13.
The structural principles of borosulfates derived from the B/S ratio are confirmed and extended to new representatives of this class showing novel motifs. According to the composition, Na[B(S2O7)2] (P21/c; a=10.949(6), b=8.491(14), c=12.701(8) Å; β=110.227(1)°; Z=4) and K[B(S2O7)2] (Cc; a=11.3368(6), b=14.662(14), c=13.6650(8) Å; β=94.235(1)°; Z=8) contain isolated [B(S2O7)2]? ions, in which the central BO4 tetrahedron is coordinated by two disulfate units. The alkali cations have coordination numbers of 7 (Na) and 8 (K), respectively. The structure of Cs[B(S2O7)(SO4)] (P21/c; a=10.4525(6), b=11.3191(14), c=8.2760(8) Å; β=103.206(1); Z=4) combines, for the first time, sulfate and disulfate units into a chain structure. Cs has a coordination number of 12. The same structural units were found in H[B(S2O7)(SO4)] (P21/c; a=15.6974(6), b=11.4362(14), c=8.5557(8) Å; β=90.334(3)°; Z=8). This compound represents the first example of a polyacid. The hydrogen atoms were located and connect the chains to form layers through hydrogen‐bonding bridges. H3O[B(SO4)2] (P4/ncc; a=9.1377(6), c=7.3423(8) Å; Z=4) is the first oxonium compound of this type to be found. The BO4 tetrahedra are linked by SO4 tetrahedra to form linear chains similar to those in SiS2. The chains form a tetragonal rod packing structure with H3O+ between the rods. The structures of borosulfates can be classified following the concept described by Liebau for silicates, which was extended to borophosphates by Kniep et al. In contrast to these structures, borosulfates do not comprise B‐O‐B bonds but instead contain S‐O‐S connections. All compounds were obtained as colourless, moisture‐sensitive single crystals by reaction of B2O3 and the appropriate alkali salt in oleum.  相似文献   

14.
The X-ray diffraction study of the potassium salt of 2-methoxy-4-dimethylamino-6-dinitromethyl-1,3,5-triazine is carried out. The crystals are triclinic; C7H9N6O 5 ? ·2K+·2H2O; a = 7.645(7) Å, b = 8.230(7) Å, c = 12.435(9) Å; α = 99.99(8)°, β = 91.52(7)°, γ = 113.86(8)°; V = 701(1) Å3, ρcalc = 1.58 g/cm3, Z = 2, space group P-1. The compound crystallizes as a crystalline hydrate with two water molecules. Two planar fragments of dinitromethyl and 2-methoxy-4-dimethylamino-1,3,5-triazine construct the anion. Their geometrical parameters are explored. The coordination of potassium cations and numerous hydrogen bonds are found which result in the development of a complex 3-D framework.  相似文献   

15.
Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)] · 7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)] · 4H2O (NDUS1), and one uranyl selenate‐selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L ‐cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4) Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two‐dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two‐dimensional uranyl selenate‐selenite sheets with a U/Se ratio of 1/2. In‐situ reaction of the L ‐cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L ‐cystine, balancing the charge of the sheets.  相似文献   

16.
Abstract

The triboluminescence spectra and crystal structures of 1,2-dimethylpyridinium tetrakis(2-thenoyltrifluoroacetonato)samarium(III) (1) and 1,2,6-trimethylpyridinium tetrakis(2-thenoyltrifluoroacetonato)samarium(III) (2) were determined. The triboluminescent maximums are similar to those of the photoluminescence. Complex 1 is centrosymmetric and the triboluminescent emission may correlate with the disorder of all S atoms, all CF3 groups and the cation. The triboluminescent activity of complex 2 may correlate with its noncentrosymmetric space group. Complex 1 crystallizes in the monoclinic space group P21/a with cell parameters a = 19.874(2) Å, b = 22.922(2)Å, c = 21.188(1)Å, β = 108.126(6)°, V = 9173(1)Å3; Z = 8; R = 0.0758 and Rw = 0.1315. Complex 2 crystallizes in the monoclinic space group Pn with cell parameters a = 11.2808(6)Å, b = 11.0199(5)Å c c = 18.4336(9)Å, β = 108.126(6)° V = 2285.28(19)Å3; Z = 4; R = 0.0347 and Rw = 0.0900. All the structures were refined by full-matrix least squares methods.  相似文献   

17.
Two new compounds, [Zn(phen)3]2[γ-As8V14O42(H2O)]?·?4H2O (1) and [Cd(phen)3]2[γ-As8V14O42(H2O)]?·?2H2O (2) (phen?=?1,10′-phenanthroline), have been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction, infrared spectrum, and thermogravimetric analysis. Compound 1 crystallizes in the triclinic space group P 1 with a?=?11.429(4)?Å, b?=?15.760(5)?Å, c?=?15.952(5)?Å, α?=?108.825(5)°, β?=?92.194(5)°, γ?=?104.155(5)°, V?=?2615.6(15)?Å3, Z?=?1; 2 crystallizes in the triclinic space group P 1 with a?=?11.450(4)?Å, b?=?15.629(6)?Å, c?=?16.302(6)?Å, α?=?109.177(5)°, β?=?92.628(5)°, γ?=?104.251(4)°, V?=?2644.8(17)?Å3, Z?=?1. Single-crystal structural analysis shows that both 1 and 2 consist of a new type of [γ-As8V14O42(H2O)]4? cluster anion.  相似文献   

18.
The blue tetranuclear CuII complexes {[Cu(bpy)(OH)]4Cl2}Cl2 · 6 H2O ( 1 ) and {[Cu(phen)(OH)]4(H2O)2}Cl4 · 4 H2O ( 2 ) were synthesized and characterized by single crystal X‐ray diffraction. ( 1 ): P 1 (no. 2), a = 9.240(1) Å, b = 10.366(2) Å, c = 12.973(2) Å, α = 85.76(1)°, β = 75.94(1)°, γ = 72.94(1)°, V = 1152.2(4) Å3, Z = 1; ( 2 ): P 1 (no. 2), a = 9.770(3) Å, b = 10.118(3) Å, c = 14.258(4) Å, α = 83.72(2)°, β = 70.31(1)°, γ = 70.63(1)°, V = 1252.0(9) Å3, Z = 1. The building units are centrosymmetric tetranuclear {[Cu(bpy)(OH)]4Cl2}2+ and {[Cu(phen)(OH)]4(H2O)2}4+ complex cations formed by condensation of four elongated square pyramids CuN2(OH)2Lap with the apical ligands Lap = Cl, H2O, OH. The resulting [Cu42‐OH)23‐OH)2] core has the shape of a zigzag band of three Cu2(OH)2 squares. The cations exhibit intramolecular and intermolecular π‐π stacking interactions and the latter form 2D layers with the non‐bonded Cl anions and H2O molecules in between (bond lengths: Cu–N = 1.995–2.038 Å; Cu–O = 1.927–1.982 Å; Cu–Clap = 2.563; Cu–Oap(OH) = 2.334–2.369 Å; Cu–Oap(H2O) = 2.256 Å). The Cu…Cu distances of about 2.93 Å do not indicate direct interactions, but the strongly reduced magnetic moment of about 2.74 B.M. corresponds with only two unpaired electrons per formula unit of 1 (1.37 B.M./Cu) and obviously results from intramolecular spin couplings (χm(T‐θ) = 0.933 cm3 · mol–1 · K with θ = –0.7 K).  相似文献   

19.
Two new inorganic–organic vanadate hybrid compounds [Mn(Hbbi)2(V4O12)] ( 1 ) and [Cd(Hbbi)2(V4O12)] ( 2 ) (bbi = 1,1’‐(1,4‐butanediyl)bis(imidazole)) were hydrothermally synthesized and characterized by elemental analyses, IR spectroscopy, TG and single‐crystal X‐ray diffraction. The two compounds crystallize in monoclinic system, P21/c space group with a = 8.556(5) Å, b = 10.761(5) Å, c = 16.917(5) Å, β = 93.032(5) o, V = 1555.4(12) Å3, Z = 2, R = 0.0390 for 1 and a = 8.657(5) Å, b = 10.743 (5) Å, c = 16.864 (5) Å, β = 93.81(5)o, V = 1564.9 (12) Å3, Z = 2, R = 0.0717 for 2 . Single‐crystal X‐ray diffraction analysis reveals that the two compounds are isostructural and both consist of one‐dimensional (1D) chains, which are constructed from vanadate anion clusters and [M(Hbbi)2]4+ cation groups [M = MnII ( 1 ), CdII ( 2 )]. Moreover, the polymeric chains are ultimately packed into a three‐dimensional (3D) supramolecular framework through C–H ··· O and N–H ··· O hydrogen bonding interactions.  相似文献   

20.
An X-ray diffraction study of 2-methoxy-4-pyrrolidinyl-6-trinitromethyl-1,3,5-triazine was carried out. The crystals are triclinic; C9H11N7O7; M = 329.25; a = 8.536(1) Å, b = 9.378(2) Å, c = 9.7401(8) Å; α = 79.13(1)°, β = 73.974(8)°; γ = 72.76(1)°; V = 710.8(2) Å3, d c = 1.54 g/cm3, Z = 2, space group P1ˉ. The molecule on the whole is planar, except the pyrrolidine ring, which has a twist conformation. No significant π-π interactions and hydrogen bonds of C-H⋯N or C-H⋯O type were found in the crystal, and the molecule packing is stabilized only due to van der Waals interactions. Original Russian Text Copyright ? 2008 by V. V. Bakharev, A. A. Gidaspov, I. A. Litvinov, and E. V. Mironova __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 49, No. 1, pp. 187–189, January–February, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号