首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Linear polyurethanes based on sugar monomers having D ‐gluco, galacto, and D ‐manno configurations and their secondary hydroxyl groups protected as bicyclic acetals, have been prepared by polyaddition reaction of these diol monomers to hexamethylene diisocyanate ( HMDI ) and 4,4′‐methylene‐bis(phenyl isocyanate) ( MDI ). The new polyurethanes seem to be amorphous materials, except that obtained from 2,3:4,5‐di‐O‐methylene‐galactitol and HMDI. Weight‐average molecular weights, determined by GPC, were in the range 16,000–115,200. TGA analyses indicated that the thermal stability of these bicyclic polyurethanes is comparable to those based on the isosorbide; both the onset and the maximum rate decomposition temperatures increased significantly with respect to the polyurethanes based on acyclic sugar monomers. The presence of the acetalized alditol units in the polyurethanes also increased the Tgs as compared with their acyclic analogs. Deacetalization of the polyurethanes containing di‐O‐isopropylidene‐D ‐mannitol units yielded the polyhydroxylated polymers in good yields, without apparent degradation of the polymer chain. These hydroxylated polymers showed an enhanced hydrophilicity and degradability and lower Tgs and thermal stability than their parent acetalized polyurethanes. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
New polyurethanes with lactone groups in the pendants and main chains were synthesized by the polyaddition of two kinds of L ‐gulonolactone‐derived diols (2,3‐O‐isopropylidene‐L ‐gulono‐1,4‐lactone and 5,6‐O‐isopropylidene‐L ‐gulono‐1,4‐lactone) with hexamethylene diisocyanate and methyl (S)‐2,6‐diisocyanatohexanoate and by the subsequent deprotection of isopropylidene groups. They were hydrolyzed more quickly than the polyurethane derived from methyl β‐D ‐glucofuranosidurono‐6,3‐lactone in a phosphate buffer solution, the pH value of which was 8.0, at 27 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4158–4166, 2002  相似文献   

3.
Novel linear carbohydrate‐derived [m,n]‐polyurethanes are successfully prepared using D ‐mannitol as renewable and low cost starting material. The key comonomer, 1,6‐di‐O‐phenylcarbonyl‐2,3,4,5‐tetra‐O‐methyl‐D ‐mannitol is polymerized with a diamine synthesized from D ‐mannitol or with alkylenediamines. These polymerization reactions afford, respectively, a [6,6]‐polyurethane entirely based on a carbohydrate derivative or [m,n]‐polyurethanes constituted by a poly‐O‐methyl substituted unit alternating with a polymethylene chain. All these polymers are stereoregular, as result of the C2 axis of symmetry of mannitol. The optically active polyurethanes are characterized by standard methods (FTIR, RMN, GPC, TGA, and DSC). Thus, GPC analysis reveals weight‐average molecular weights between 18,000 and 25,000 Da. Thermal studies (DSC) indicate that the polymers obtained are amorphous materials with Tg values dependent on the structure and chain length of the diamine constituent. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

4.
A set of linear [m,n]‐type polyurethanes was synthesized by polycondensation in solution from hexamethylene diisocyanate and 4,4′‐methylene‐bis(phenyl isocyanate) with alditols. Threitol, arabinitol, and xylitol bearing the secondary hydroxy groups blocked as methyl ethers were used. Either regioregular or nonregioregular polymers (depending on the configuration of the alditol) were obtained in high yields and with number‐average molecular weights within the 20,000–30,000 range. All these polyurethanes were amorphous with Tg being highly dependent on the aliphatic or aromatic nature of the diisocyanate used, but scarcely depending on the chemical structure of the alditol moiety. They were found to be stable up to near 300 °C, decomposing at higher temperatures through a complex three‐stage mechanism. Polyurethanes obtained from threitol did not show significant enhancement of hydrolytic degradability as compared with polyurethanes obtained from 1,4‐butanediol. Conversely, polyurethane prepared from xylitol and hexamethylendiisocyanate was found to be almost fully hydrolyzed in 1 month when incubated in water either at 80 °C and pH 7.4 or at 37 °C and pH 10. It was concluded that the alditol size seems to be of prime importance in determining the hydrodegradability of these sugar containing polyurethanes. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4109–4117, 2007  相似文献   

5.
Three new polymerizable diols, based on mono‐, di‐, and tri‐O‐allyl‐L ‐arabinitol derivatives, were prepared from L ‐arabinitol as versatile materials for the preparation of tailor‐made polyurethanes with varied degrees of functionalization. Their allyl functional groups can take part in thiol‐ene reactions, to obtain greatly diverse materials. This “click” reaction with 2‐mercaptoethanol was firstly studied on the highly hindered sugar precursor 2,3,4‐tri‐O‐allyl‐1,5‐di‐O‐trityl‐L ‐arabinitol, to apply it later to macromolecules. A polyurethane with multiple pendant allyl groups was synthesized by polyaddition reaction of 2,3,4‐tri‐O‐allyl‐L ‐arabinitol with 1,6‐hexamethylene diisocyanate, and then functionalized by thiol‐ene reaction. The coupling reaction took place in every allyl group, as confirmed by standard techniques. The thermal stability of the novel polyurethanes was investigated by thermogravimetric analysis and differential scanning calorimetry (DSC). This strategy provides a simple and versatile platform for the design of new materials whose functionality can be easily modified. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
A route from naturally occurring myo‐inositol to hydroxyl‐bearing polyurethanes has been developed. The diol prepared from the bis‐acetalization of myo‐inositol with 1,1‐dimethoxycyclohexane was reacted with a rigid diisocyanate, 1,3‐bis(isocyanatomethyl)cyclohexane to afford the corresponding polyurethane, of which glass transition temperature (Tg) was quite high as 192 °C. The polyurethane contains side chains inherited from the acetal moieties of the diol monomer and was treated with trifluoroacetic acid to hydrolyze the acetal moieties and afford the target polyurethane functionalized with hydroxyl groups. The presence of many hydroxyl groups in the side chains, which can form hydrogen bonds with each other, resulted in a high Tg, 186 °C. In addition, the hydroxyl groups were reacted with isocyanates to achieve further side‐chain modifications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1358–1364  相似文献   

7.
Four kinds of bio‐based polyurethanes bearing hydroxy groups in the pendants were synthesized by the polyaddition of D ‐mannitol‐ and D,L ‐erythritol‐derived diols (1,2:5,6‐di‐O‐isopropylidene‐D ‐mannitol and 1,2‐O‐isopropylidene‐D,L ‐erythritol) with hexamethylene diisocyanate and methyl (S)‐2,6‐diisocyanatohexanoate and the subsequent deprotection of the isopropylidene groups. They were hydrolyzed much more quickly than the corresponding protected polyurethanes at 50 °C and pH 7.0, although their hydrolytic degradation rate was lower than that of polyurethanes with saccharic and glucuronic lactone groups, which had been reported in our previous articles. The introduction of D ‐mannitol units to the polyether‐polyurethanes containing poly(oxytetramethylene) glycol units also enhanced their hydrolyzibility. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
Novel polycarbonates, with pendant functional groups, based on 1,4:3,6‐dianhydrohexitols and L ‐tartaric acid derivatives were synthesized. Solution polycondensations of 1,4:3,6‐dianhydro‐bis‐O‐(p‐nitrophenoxycarbonyl)hexitols and 2,3‐di‐O‐methyl‐L ‐threitol or 2,3‐O‐isopropylidene‐L ‐threitol afforded polycarbonates having pendant methoxy or isopropylidene groups, respectively, with number average molecular weight (Mn) values up to 3.61 × 104. Subsequent acid‐catalyzed deprotection of isopropylidene groups gave well‐defined polycarbonates having pendant hydroxyl groups regularly distributed along the polymer chain. Differential scanning calorimetry (DSC) demonstrated that all the polycarbonates were amorphous with glass transition temperatures ranging from 57 to 98 °C. Degradability of the polycarbonates was assessed by hydrolysis test in phosphate buffer solution at 37 °C and by biochemical oxygen demand (BOD) measurements in an activated sludge at 25 °C. In both tests, the polycarbonates with pendant hydroxyl groups were degraded much faster than the polycarbonates with pendant methoxy and isopropylidene groups. It is noteworthy that degradation of the polycarbonates with pendant hydroxyl groups was remarkably fast. They were completely degraded within only 150 min in a phosphate buffer solution and their BOD‐biodegradability reached nearly 70% in an activated sludge after 28 days. The degradation behavior of the polycarbonates is discussed in terms of their chemical and physical properties. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3909–3919, 2005  相似文献   

9.
New thermoplastic nonsegmented thiopolyurethanes were obtained from the low-melting aliphatic–aromatic thiodiols 4,4′-bis(2-hydroxyethylthiomethyl)benzophenone (BHEB), 4,4′-bis(3-hydroxypropylthiomethyl)benzophenone (BHPB), and 4,4′-bis(6-hydroxyhexylthiomethyl)benzenophenone(BHHB) as well as hexamethylene diisocyanate (HDI), both by melt and solution polymerization with dibutyltin dilaurate as the catalyst. The effect of various solvents on molecular-weight values was examined. The polymers with the highest reduced viscosities (0.63–0.88 dL/g) were obtained when the polymerization was carried out in a solution of tetrachloroethane, N,N-dimethylacetamide, and N,N-dimethylacetamide or N,N-dimethylformamide for BHEB-, BHPB-, and BHHB-derived polyurethanes, respectively. These polymers with a partially crystalline structure showed glass-transition temperatures (Tg) in the range of −1 to 39 °C, melting temperatures (Tm) in the range of 107 to 124 °C, and thermal stabilities up to 230 to 240 °C. The BHEB-derived polyurethane is a low-elasticity material with high tensile strength (ca. 50 MPa), whereas the BHPB- and BHHB-derived polyurethanes are more elastic, showing yield stress at approximately 16 MPa. We also obtained segmented polyurethanes by using BHHB, HDI, and 20 to 80 mol % poly(oxytetramethylene) glycol (PTMG) of n = 1000 as the soft segment. These are high-molecular thermoplastic elastomers that show a partially crystalline structure. Thermal properties were investigated by thermogravimetric analysis and differential scanning calorimetry. The increase in PTMG content decreases the definite Tg and increases the solubility of the polymers. These segmented polyurethanes exhibit the definite Tg (−67 to −62 °C) nearly independent of the hard-segment content up to approximately 50 wt %, indicating the existence of mainly phase-separated soft and hard segments. Shore A/D hardness and tensile properties were also determined. As the PTMG content increases, the hardness, modulus of elasticity, and tensile strength decrease, whereas elongation at break increases. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4140–4150, 1999  相似文献   

10.
Two‐ and three‐component polyurethanes containing 1,4:3,6‐dianhydro‐D ‐sorbitol (isosorbide) derived from glucose were synthesized using n‐BuSn(?O)OH·H2O as a catalyst, and the thermal properties (Tg, Td) of the polymers were investigated by differential scanning calorimetry and thermogravimetric analysis. We carried out molds for polyurethanes, the molds of polyurethanes were obtained. The dynamic mechanical analyzes showed that the storage modulus values of the three‐component polymers were constant to a higher temperature than those of the two‐component polymers. The storage moduli (E′), loss moduli (E″), and values of tan δ for the polymers were obtained. The rigidity of three‐component polymers was increased by the introduction of bisphenol A and diphenylmethane group to two‐component polymer. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6025–6031, 2009  相似文献   

11.
Naturally occurring tartaric acid was used as raw material for the synthesis of novel linear polyurethanes (PURs) bearing two carboxylate side‐groups in the repeating unit. Aliphatic and aromatic PURs were obtained by reaction in solution of alkyl and benzyl tartrates with hexamethylene diisocyanate and 4,4′‐methylene‐bis(phenyl isocyanate), respectively. All the novel PURs were thermally stable and optically active. The aliphatic carboxylate‐containing PURs had Mw in the 40–70 kDa range, with PD between 2.1 and 2.5; all were semicrystalline polymers with melting temperatures between 100 and 150 °C and Tg in the 50–80 °C range. The aromatic PURs were amorphous materials with molecular weights between 18 kDa and 25 kDa and Tg above 130 °C. Hydrogenolysis of the PUR made from hexamethylene diisocyanate and benzyl tartrate yielded PURs containing up to 40% of free carboxylic side‐groups. The tartrate‐derived PURs displayed enhanced sensitivity to hydrolysis compared with their unsubstituted 2,6‐PUR homologs. The PURs bearing free carboxylic groups were unique in being degraded by water upon incubation under physiological conditions. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2391–2407, 2009  相似文献   

12.
Mixtures of the dimethyl esters of adipic acid and 2,3:4,5‐di‐O‐methylene‐galactaric acid (Galx) were made to react in the melt with either 1,6‐hexanediol or 1,12‐dodecanediol to produce linear polycyclic copolyesters with aldarate unit contents varying from 10 up to 90 mole %. The copolyesters had weight–average molecular weights in the ~35,000–45,000 g mol?1 range and a random microstructure, and were thermally stable up to nearly 300 °C. They displayed Tg in the ‐50 to ‐7 °C range with values largely increasing with the content in galactarate units. All the copolyesters were semicrystalline with Tm between 20 and 90 °C but only those made from 1,12‐dodecanediol were able to crystallize from the melt at a crystallization rate that decreased as the contents in the two comonomers approached each other. Copolyesters containing minor amounts of galactarate units adopted the crystal structure characteristic of aliphatic polyesters but a new crystal polymorph was formed when the cyclic sugar units became the majority. Stress–strain parameters were sensitively affected by composition of the copolyesters with the mechanical behavior changing from flexible/ductile to stiff/brittle with the replacement of adipate units by the galactarate units. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
A novel melt transurethane polycondensation route for polyurethanes under solvent‐free and nonisocyanate condition was developed for soluble and thermally stable aliphatic or aromatic polyurethanes. The new transurethane process was investigated for A + B, A‐A + B, and A‐A + B‐B (A‐urethane and B‐hydroxyl) ‐type condensation reactions, and also monomers bearing primary and secondary urethane or hydroxyl functionalities. The transurethane process was confirmed by 1H and 13C NMR, and molecular weight of the polymers were obtained as Mn = 10–15 × 103 and Mw = 15–45 × 103 g/mol. The mechanistic aspects of the melt transurethane process and role of the catalyst were investigated using model reactions, 1H NMR, and MALDI‐TOF‐MS. The model reactions indicated the occurrence of 97% reaction in the presence of catalyst, whereas its absence gave only less than 2% of the product. The polymer samples were subjected for end‐group analysis using MALDI‐TOF‐MS, which confirms the Ti‐catalyst mediated nonisocyanate pathway in the melt transurethane process. Almost all the polyurethanes were stable up to 280 °C, and the Tg of the polyurethanes can be easily fine‐tuned from ?30 to 120 °C by using appropriate diols in the melt transurethane process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2445–2458, 2008  相似文献   

14.
We synthesized six polyurethane networks from 4,4′‐diphenylmethane diisocyanate and polyols based on midoleic sunflower, canola, soybean, sunflower, corn, and linseed oils. The differences in network structures reflected differences in the composition of fatty acids and number of functional groups in vegetable oils and resulting polyols. The number average molecular weights of polyols were between 1120 and 1300 and the functionality varied from 3.0 for the midoleic sunflower polyol to 5.2 for the linseed polyol. The functionality of the other four polyols was around 3.5. Canola, corn, soybean, and sunflower oils gave polyurethane resins of similar crosslinking density and similar glass transitions and mechanical properties despite somewhat different distribution of fatty acids. Linseed oil–based polyurethane had higher crosslinking density and higher mechanical properties, whereas midoleic sunflower oil gave softer polyurethanes characterized by lower Tg and lower strength but higher elongation at break. It appears that the differences in properties of polyurethane networks resulted primarily from different crosslinking densities and less from the position of reactive sites in the fatty acids. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 809–819, 2004  相似文献   

15.
The curing process of hexamethylene diisocyanate‐based polyurethane has been monitored by applying FTIR and DSC methods. A general relationship between glass‐transition temperature (Tg) and conversion of curing process has been obtained. This suggests that the reaction path and the relative reaction rates are independent of the curing temperature. The reaction kinetics of the system is analyzed using the Tg data converted to the conversion of the curing process. A set of experimental data and one theoretical model of Tg versus chemical conversion are presented to prove the assumption where a direct one‐to‐one relationship between the Tg (as measured) and the chemical conversion is obtained. Apparent activation energies (Ea) obtained by applying three different methods suggest good agreement. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2213–2220, 2000  相似文献   

16.
Linear polyurethane, linear segmented polyurethane, polyurethane networks, and polyurethane acrylate networks of various composition were synthesized. The variation of Tg with the type of macrodiol, its length, and the chemical composition of the polymer were studied in relation with the percentage of soft segments, the molar mass between crosslinks, and the concentration of urethane bonds. In this work, the networks were considered as composed of chain segments of various composition between point-like crosslinks. The chemical heterogeneities of the networks were not taken into account. For polyurethanes, it was shown that Tg values are essentially controlled by the amount of urethane bonds. For polyurethane acrylates, the Tg values are dependent on the amount of urethane bonds but also on the presence of crosslinks whose number is varying with the excess of diisocyanate of the first step three times faster for PUA compared with PU. No clear relation was observed between Tg and the molar mass between point-like crosslinks. Another approach considering the network heterogeneities is indispensable and will be used in a following work. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
A novel flame retardant (4‐diphenylphosphoryloxyphenoxy)(4‐hydroxyphenoxy)cyclotriphosphazene (PPPZ) was prepared and characterized by FT‐IR, 31P‐NMR and 1H‐NMR spectroscopy. Polyurethanes that contained aromatic phosphate groups attached to cyclotriphosphazene, with various phosphorus contents, were prepared from PPPZ, poly(propylene glycol), 1,4‐butanediol, and 2,4‐toluene diisocyanate by one‐step polymerization. The polymers prepared were characterized by FT‐IR, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and oxygen index (LOI) measurements. The effect of the concentration of PPPZ on the thermal behavior of the polyurethane was studied. The results indicated that the glass transition temperature (Tg) of the polyurethane increased with the concentration of PPPZ. The PPPZ‐containing polyurethanes exhibited slightly higher temperatures of degradation and higher char yields than PPPZ‐free polyurethanes. Moreover, the LOI of the polyurethanes increased with increasing PPPZ content. Also studied was the possible mechanism of the flame retardancy. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Novel linear homogeneous polyurethanes and polyureas with enhanced hydrophilic character have been successfully prepared from sugar‐based monomers having their hydroxyl groups free or partially protected. By the reaction of primary hydroxyl groups of xylitol with dimethyl hexamethylene dicarbamate (HMDC) or di‐tert‐butyl‐4,4′‐diphenyl methyl dicarbamate (MDC), two new linear semicrystalline polyurethanes [PU(X‐HMDC) and PU(X‐MDC)] have been prepared. Likewise, by the reaction of xylitol with the analogous diisocyanates hexamethylene diisocyanate (HMDI) or 4,4′‐methylenebis(phenyl isocyanate) (MDI), similar polyurethanes [PU(X‐HMDI) and PU(X‐MDI)] were obtained. However, these latter polyurethanes present some degree of crosslinking because of the higher reactivity of the diisocyanate comonomers. Linear hydrophilic polyureas having free hydroxyl groups joined to the main chain have also been prepared by the reaction of the same diisocyanates (HMDI and MDI) with 1,6‐diamino‐1,6‐dideoxy‐D ‐mannitol and 1,6‐diamino‐1,6‐dideoxy‐3:4‐O‐isopropylidene‐D ‐mannitol. As far as we are aware, this kind of polyhydroxylated polyurea has not been previously described in the literature. The new polymers were characterized by standard methods (elemental analyses, gel permeation chromatography, IR, and NMR). The polyurethanes were hydrolytically degradable under physiological conditions, in contrast with less‐hydrophilic linear polyurethanes previously described. The thermal properties of the novel polymers were investigated by thermogravimetric analysis and differential scanning calorimetry. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
Viscoelastic properties of urethane and ester conjugation cardo polymers that contain fluorene group, 9,9‐bis(4‐(2‐hydroxyethoxy)phenyl)fluorene (BPEF), were investigated. As for the urethane‐type cardo polymers containing BPEF in the main chain, it had a high glass‐transition temperature (Tg), which was observed as the α dispersion on viscoelastic measurement, and its temperature depended on the chemical structure of the spacing unit, such as toluene diisocyanate (TDI), 4,4′‐methylene diphenyl diisocyanate (MDI), methylene dicycloexyl diisocyanate (CMDI), and hexamethylene diisocyanate (HDI). Moreover, the Tg of urethane‐type cardo copolymers with various cardo contents increased with an increase of cardo content. Owing to the increase of Tg of cardo polymers, another molecular motion can be measured at the temperature between the α and β dispersion that was assigned to the molecular motion of urethane conjugation unit around 200 K, and it was referred to as the αsub dispersion. The peak temperature of the αsub dispersion was influenced by the chemical structure of the spacing unit, but it did not change for the cardo polymer containing the same spacing unit. Consequently, it was deduced that the αsub dispersion was originated in the subsegmental molecular motions of the cardo polymers. Ester‐type cardo polymer had higher Tg in comparison with noncardo polymer that consisted of dimethyl groups (BPEP) instead of BPEF as well. The αsub dispersion was also measured at the temperature between the α and β dispersion, which was assigned to the molecular motion of ester conjugation unit, around 220 K. For ester cardo polymer, the γ dispersion was measured in a low‐temperature region around 140 K, and it was due to a small unit motion in the ester‐type cardo polymers, such as ethoxyl unit, ? C2H4O? . Moreover, the intensity of the γ dispersion of noncardo polymer was higher than that of cardo polymer, which means the molecular motion was much restricted by the cardo structure of BPEF. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2259–2268, 2005  相似文献   

20.
The synthesis of hydroxyproline‐based telechelic prepolymers by the condensation polymerization of trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline methyl ester was investigated. All the polymerizations were carried out in the melt with stannous octoate as the catalyst and with different diols. The products were characterized by differential scanning calorimetry, proton nuclear magnetic resonance, infrared spectrophotometry, and inherent viscosity (ηinh). According to the analytic results, the ηinh value of the prepolymers depended on the kind and amount of diols that were added. With an increase in the 1,6‐hexanediol feed from 2 to 10 mol %, there was a decrease in ηinh from 0.78 to 0.41 along with a decrease in the glass‐transition temperature (Tg ) from 63 to 42 °C. When 2 mol % of different kinds of diols were used, ηinh ranged from 0.78 to 0.21, and Tg varied from 70 to 43 °C. These new prepolymers could be linked to poly(ester‐urethane) by the chain extender 1,6‐hexamethylene diisocyanate. The poly(ester‐urethane) was amorphous, and the Tg was 76 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2449–2455, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号