首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The viscoelastic properties of the epoxy filled with silica nanoparicles have been investigated by dynamic nanoindentation and characterized by the storage modulus and loss tangent. The materials studied are neat epoxy and silica/epoxy composites with silica volume fraction of 1, 3, 6, 10, and 14 vol %, respectively. The silica nanoparticles with an average diameter of 25 nm are found to disperse homogeneously in the epoxy matrix. The effect of the particle content, force frequency, and penetration load on the viscoelastic behavior is studied and discussed. The comparison with traditional testing methods such as tension, bending, and DMTA is made. Besides, theoretical results by using micromechanics models are also obtained and compared with the experimental results. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1030–1038, 2009  相似文献   

2.
Linear and nonlinear viscoelastic properties for binary blends composed of isotactic polypropylene and polytetrafluoroethylene (PTFE) are studied. It is found that blending a small amount of PTFE greatly enhances the storage modulus in the low frequency region. Further, drawdown force and normal stress difference increase with the PTFE content. Electron microscope observation reveals that PTFE deforms into fine fibers whose diameter is smaller than 0.5 μm. The network structure composed of the fibers is responsible for the marked elastic properties. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2008–2014, 2009  相似文献   

3.
The effect of blend ratio and compatibilization on dynamic mechanical properties of PP/NBR blends was investigated at different temperatures. The storage modulus of the blend decreased with increase in rubber content and shows two Tg's indicating the incompatibility of the system. Various composite models have been used to predict the experimental viscoelastic data. The Takayanagi model fit well with the experimental values. The addition of phenolic modified polypropylene (Ph-PP) and maleic modified polypropylene (MA-PP) improved the storage modulus of the blend at lower temperatures. The enhancement in storage modulus was correlated with the change in domain size of dispersed NBR particles. The effect of dynamic vulcanization using sulfur, peroxide, and mixed system on viscoelastic behavior was also studied. Among these peroxide system shows the highest modulus. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2309–2327, 1997  相似文献   

4.
The effect of mixing conditions on the morphology, molten‐state viscoelastic properties, and tensile impact strength of polystyrene/polyethylene (80/20) blends compatibilized with styrene–butadiene block copolymers containing various numbers and lengths of blocks was studied. Under all mixing conditions, an admixture of a styrene–butadiene block copolymer led to a finer phase structure and to an increase in the dynamic viscosity, storage modulus, and tensile impact strength. The effects were stronger for S–B diblock with a short styrene block than for S–B–S–B–S pentablock with long styrene blocks (where S represents styrene and B represents butadiene). For all blends mixed longer than 2 min, the mixing time had only a small effect on their morphology and properties. Surprisingly, the localization of S–B diblock copolymers was strongly dependent on the rate of mixing. The mixing rate had a nonnegligible effect on the viscoelastic properties of the compatibilized blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 609–622, 2003  相似文献   

5.
The study of the viscoelastic properties of composites based on road bitumens have shown that the addition of polymeric modifiers (poly(bytadiene-block-styrene) or devulcanized rubber particles) substantially increases the storage and loss moduli and decreases the intensity of reduction in the storage modulus with temperature by several orders of magnitude. However, at high polymer content, growth inadmissible from the point of view of acceptable technological parameters is observed in the apparent viscosity. The introduction of carbon nanotubes into bitumen does not substantially affect its viscoelastic properties. Filling with meta-kaolin promotes an increase in the storage modulus at elevated temperatures. It has been shown that a direct correlation may be established between the objective characteristics of bitumen-based composites and standard specification parameters, such as penetration depth and heat resistance.  相似文献   

6.
Poly(p-phenylene pyromellitimide) (PMDA-PDA), poly(oxydiphenylene pyromellitimide) (PMDA-ODA), and poly(4,4′-oxydiphenylene p-phenylene pyromellitimide) random copolyimide thin films with different p-phenylene diamine (PDA) contents were prepared. Nanoindentation was used to characterize the mechanical properties (hardness and modulus), and a prism coupler was used for measuring the optical properties (refractive index and birefringence). The hardness and modulus were calculated from curves of the nanoindentation load versus the displacement. The effect of the PDA content on the hardness and modulus was studied. The hardness of the polyimide thin films varied from 0.248 to 0.613 GPa, and the modulus varied from 3.78 to 6.75 GPa at a load of 0.127 mN. The hardness and modulus increased with increasing PDA content, whereas the penetration depth and plastic deformation decreased. As the load increased, the penetration depth increased. The hardness of PMDA-ODA films remained constant, whereas that of PMDA-PDA and PMDA-ODA/PDA films decreased with increasing load. The in-plane refractive index varied from 1.7219 to 1.8244, and the out-of-plane refractive index varied from 1.6390 to 1.5827, as a function of the PDA content. The birefringence varied with the PDA content from 0.0829 to 0.2417. The morphological structure of the prepared polyimide thin films was investigated with wide-angle X-ray diffraction. The mechanical properties and optical properties of the polyimide thin films were strongly dependent on the changes in the morphological structure, which originated from the variation of the composition. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2202–2214, 2004  相似文献   

7.
The influence of middle and outer block composition of symmetric triblock copolymers consisting of a polystyrene–polybutadiene (S/B) random middle block and two polystyrene (PS) outer blocks on morphology and rheological behavior has been investigated. Master curves are obtained by shifting the experimental data measured at different temperatures using time‐temperature superposition principle, the validity of which was confirmed in the linear viscoelastic regime. The rheological properties are observed to be strongly influenced by the relative composition of the S‐SB‐S triblock copolymers. Increasing the S/B ratio from 1:1 to 1:2 in the middle block has lead to a change in morphology from wormlike to lamellar, which is also accompanied with broad and sharp tan δ peaks in the dynamic mechanical measurements, respectively. The storage and loss modulus have been observed to increase with the increase in PS contents in the outer blocks and PB content in the middle block. The triblock copolymer with wormlike structure showed terminal linear viscoelastic behavior, whereas the ones with lamellar morphology showed nonterminal flow behavior in the similar low‐frequency regime. The relaxation modulus (Gt) has been observed to increase four times when the S/B ratio is increased from 1:1 to 1:2, whereas it increases threefold when the PS‐content in the outer block was increased by just 8 wt %. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2776–2788, 2006  相似文献   

8.
Both linear and nonlinear viscoelastic properties of ionic polymer composites reinforced by soy protein isolate (SPI) were studied. Viscoelastic properties were related to the aggregate structure of fillers. The aggregate structure of SPI is consisted of submicron size of globule protein particles that form an open aggregate structure. SPI and carbon black (CB) aggregates characterized by scanning electron microscope and particle size analyzer indicate that CB aggregates have a smaller primary particle and aggregate size than SPI aggregates, but the SPI composites have a slightly greater elastic modulus in the linear viscoelastic region than the CB composites. The composite containing 3–40 wt % of SPI has a transition in the shear elastic modulus between 6 and 8 vol % filler, indicating a percolation threshold. CB composites also showed a modulus transition at <6 vol %. The change of fractional free volume with filler concentration as estimated from WLF fit of frequency shift factor also supports the existence of a percolation threshold. Nonlinear viscoelastic properties of filler, matrix, and composites suggested that the filler‐immobilized rubber network generated a G′ maximum in the modulus‐strain curves and the SPI formed a stronger filler network than the CB in these composites. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3503–3518, 2005  相似文献   

9.
Structure‐property relationships in exfoliated polyisoprene (PI)/clay nanocomposites have been studied as a function of the clay concentration with rheometry, X‐ray diffraction, small‐angle X‐ray scattering, and transmission electron microscopy. The results presented here indicate that the interlayer spacing of layered silicates increases from 2 to at least approximately 14 nm because of the penetration of polymer molecules into the spacing between the silicate layers. The average aspect ratio (width/thickness) of the dispersed nanoplates is also estimated to be at least approximately 80. Additionally, the storage modulus of the nanocomposite exhibits frequency‐independent pseudo‐solidlike behavior above the percolation threshold [volume fraction of clay at the percolation threshold (?p) = 0.02] and shows large enhancements (up to approximately six orders of magnitude) in comparison with the storage modulus of PI when the volume fraction of clay (?) is greater than ?p. For the shear‐aligned PI/clay nanocomposites, an increase in the storage modulus with shear alignment is observed at ? < ?p, whereas a decrease in the storage modulus is observed for ? > ?p. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1000–1009, 2004  相似文献   

10.
By Friedel‐Crafts alkylation reaction, catalyzed by a Lewis acid of anhydrous aluminum chloride (AlCl3), binary polymer blends of polypropylene (PP)/polystyrene (PS) with volume proportion of 80/20 were in situ compatiblized and prepared in an XSS‐30 melt mixer at 210 °C. The linear viscoelastic characteristics of the blends were investigated by checking the variations of storage modulus, loss modulus, complex modulus, and complex viscosity of the in situ compatiblized blends, which were dependent on AlCl3 content. In addition, Han plots of the in situ compatiblized blends with different AlCl3 content were also used to characterize the linear viscoelastic properties of the blends. The results showed that both the dynamic rheological parameters and the Han plots were obviously influenced by the rheological properties of the matrix and slightly influenced by the rheological properties of the dispersed phase. Further investigations revealed that phase geometry contributions to the dynamic rheological parameters of the blends could be ignored in comparison with the contributions of the components and the interfacial modification, which were defined and obtained according to log‐linear‐additivity rule. The linear viscoelastic characteristics of the blends were mainly controlled by the combination of the effects of interfacial modification between phases and the rheological properties of the matrix. Storage modulus is the most sensitive dynamic rheological parameter to characterize the interfacial compatiblization effects in the in situ compatiblized binary polymer blends with rheological properties of components variable. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1349–1362, 2010  相似文献   

11.
The linear and nonlinear melt viscoelastic properties for a series of carbon black‐filled polymer composites were studied. Complementary tapping‐mode atomic force microscopy (AFM) studies were used to examine the dispersion and structural correlations of the filler particles in these composites. The low‐frequency dependence of the linear viscoelastic moduli gradually changes from liquidlike behavior for the unfilled polymer to pseudosolid character for composites with more than 9 vol % carbon black filler. The plateau modulus, inferred from the linear viscoelastic response, exhibits a somewhat discontinuous change at about 9 vol % filler. On the basis of the linear viscoelastic response, we postulate that the carbon black filler forms a continuous percolated network structure beyond 9 vol % filler, considerably lower than that expected from theoretical calculations for overlapping spheres and ellipsoids. We suggest that the lower threshold for percolation is due to the polymer mediation of the filler structure, resulting from the low functionality of the polymer and, consequently, few strong polymer–filler interactions, allowing for long loops and tails that can either bridge filler particles or entangle with one another. Furthermore, the strain amplitude for the transition from linear behavior to nonlinear behavior of the modulus for the composites with greater than 9 vol % filler is independent of frequency, and this critical strain amplitude decreases with increasing filler concentration. Complementary AFM measurements suggest a well‐dispersed carbon black structure with the nearest neighbor distance showing a discontinuous decrease at about 9 vol % filler, again consistent with the formation of a filler network structure beyond 9 vol % carbon black. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 256–275, 2001  相似文献   

12.
Blends of high‐density polyethylene (HDPE) and polyamide‐6 (PA6) were produced by ultrasonic extrusion. Ultrasonic irradiation leads to degradation of polymers and in situ compatibilization of blends as confirmed by variations in linear viscoelastic properties. The results showed that the effect of ultrasonic irradiation on dynamic rheological properties depends on the composition and experimental temperature. At the same time, the relationship between storage modulus and loss modulus indicated the effect of ultrasonic irradiation on compatibility of HDPE/PA6 blends. Based on an emulsion model, the interfacial tension between the matrix and the dispersed phase was predicted. The data obtained showed that ultrasonic irradiation can decrease the interfacial tension and then enhance the compatibility of HDPE/PA6 blends. This finding was consistent with our previous work. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1260–1269, 2005  相似文献   

13.
We have used the Interfacial Force Microscope to perform temperature dependent indentation measurements on a model viscoelastic material, Silly Putty. By transforming time dependent stress relaxations into frequency dependent modulus, we can identify the temperature dependence of the elastic and viscous response of an experimentally challenging material. This technique promises to be useful in determining the mechanical properties of composite materials with microscopic spatial resolution. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1285–1290, 2009  相似文献   

14.
Parametric studies were performed using finite element analysis (FEA) to learn how material and surface properties of polypropylene (PP) affect scratch behavior. Three-dimensional FEA modeling of scratching on a PP substrate with a spherical-tipped indenter is presented. Three different loading conditions, that is constant scratch depth, constant normal load, and linearly increasing normal load, are adopted for this parametric study. From the FEA findings, it is learned that Poisson's ratio has a negligible effect on scratch performance, whereas raising the coefficient of adhesive friction induces a significantly larger residual scratch depth and tangential force on the scratch tip. Increasing the Young's modulus of a material does not necessarily improve its overall scratch performance. On the other hand, modifying the yield stress of a material has a major impact on scratch resistance as a higher yield stress reduces the residual scratch depth. From this numerical effort, it is concluded that the yield stress and coefficient of adhesive friction are the most critical parameters to influence the scratch performance of a material. Analyses also suggest that the general trend in the parametric effect of the above four parameters on scratch behavior is independent of the applied normal load level. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1435–1447, 2007  相似文献   

15.
The relationships between the structure and properties have been established for copolymers of propylene and 1‐hexene synthesized with an isotactic metallocene catalyst system. The most important factor affecting the structure and properties of these copolymers is the comonomer content. The thermal treatment, that is, the rate of cooling from the melt, is also important. These factors affect the thermal properties, the degree of crystallinity, and therefore the structural parameters and the viscoelastic behavior. A slow cooling from the melt favors the formation of the γ phase instead of the α modification. Regarding the viscoelastic behavior, the β relaxation, associated with the glass‐transition temperature, is shifted to lower temperatures and its intensity is increased as the 1‐hexene content raises. The microhardness values are correlated with those of the storage modulus deduced from dynamic mechanical thermal analysis curves, and good linear relations have been obtained between these parameters. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1253–1267, 2006  相似文献   

16.
The effects of the blend ratio and initiating system on the viscoelastic properties of nanostructured natural rubber/polystyrene‐based interpenetrating polymer networks (IPNs) were investigated in the temperature range of ?80 to 150 °C. The studies were carried out at different frequencies (100, 50, 10, 1, and 0.1 Hz), and their effects on the damping and storage and loss moduli were analyzed. In all cases, tan δ and the storage and loss moduli showed two distinct transitions corresponding to natural rubber and polystyrene phases, which indicated that the system was not miscible on the molecular level. However, a slight inward shift was observed in the IPNs, with respect to the glass‐transition temperatures (Tg's) of the virgin polymers, showing a certain degree of miscibility or intermixing between the two phases. When the frequency increased from 0.1 to 100 Hz, the Tg values showed a positive shift in all cases. In a comparison of the three initiating systems (dicumyl peroxide, benzoyl peroxide, and azobisisobutyronitrile), the dicumyl peroxide system showed the highest modulus. The morphology of the IPNs was analyzed with transmission electron microscopy. The micrographs indicated that the system was nanostructured. An attempt was made to relate the viscoelastic behavior to the morphology of the IPNs. Various models, such as the series, parallel, Halpin–Tsai, Kerner, Coran, Takayanagi, and Davies models, were used to model the viscoelastic data. The area under the linear loss modulus curve was larger than that obtained by group contribution analysis; this showed that the damping was influenced by the phase morphology, dual‐phase continuity, and crosslinking of the phases. Finally, the homogeneity of the system was further evaluated with Cole–Cole analysis. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1680–1696, 2003  相似文献   

17.
The effects of repeated large strain shear cycles on the dynamics of a glassy acrylate polymer are investigated using an original contact method. It is based on the measurement of the shear properties of thin (about 50 μm) polymer films geometrically confined within contacts between elastic substrates. Under small amplitude (300 nm–10 μm) oscillating lateral displacements, friction at the contact interface can be neglected and the measurement of the contact lateral response thus provides information about the rheology of the sheared polymer film. Using this approach, the complex shear modulus of the polymer film can be measured both in the linear (viscoelastic) and in the nonlinear regimes. The investigations are focused on the changes in mechanical properties induced in a large strain regime where the polymer glass is cyclically sheared up to the yield point. During the application of large strain cycles, the mechanical response of the polymer glass slowly evolves toward a quasi stabilized state which is described from the measurement of an apparent–strain dependent–complex shear modulus. When the applied strain is increased by a tenfold factor, this apparent shear modulus decreases by about one decade. These underlying changes are investigated from a consideration of the time dependent linear viscoelastic properties after the mechanical stimulus. Both mechanical rejuvenation and recovery (ageing) effects are evidenced. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

18.
The viscoelastic behavior of multiwall carbon nanotube (MWCNT) reinforced polyamide 66 (PA 66) was evaluated to investigate the effect of CNT content and loading frequency on dynamic moduli (i.e. storage modulus E′ and loss modulus E″) and damping factor tanδ. PA 66/CNT disk samples with five different CNT contents ranging from 3 wt % to 15 wt % were manufactured by injection molding. Testing was performed over the frequency range of 0.1–100 Hz at room temperature. Dynamic mechanical analysis results show that the mechanical properties are highly functions of tested frequency and the improvement on loss and storage modulus of nanocomposites with the addition of CNT is highly dependent on tested frequencies. The variability in loss modulus is significantly higher than the variability in the storage modulus indicating the correlation of loss modulus with uncertainties present in nanocomposite microstructure while storage modulus is essentially independent of microstructure for a given reinforcement content.  相似文献   

19.
The dynamic mechanical and thermal properties of natural rubber/poly (methyl methacrylate) blends (NR/PMMA) with and without the addition of graft copolymer (NR‐g‐PMMA) have been investigated. Dynamic mechanical spectroscopy is used to examine the effect of compatibilizer loading on storage modulus (E′), loss modulus (E″) and loss tangent (tan δ) at different temperatures and at different frequencies. The morphology of the blends indicates that the size of the dispersed phase decreased by the addition of a few percent of the graft copolymer followed by a leveling off at higher concentrations. This is an indication of interfacial saturation. Attempts have been made to correlate morphology with dynamic mechanical properties. Various models have been used to fit the experimental viscoelastic results. Differential scanning calorimetry has been used to analyze the glass‐transition temperatures of the blends. The thermal stability of the blends has been analyzed by thermogravimetry. Compatibilized blends are found to be more thermally stable than uncompatibilized blends. Finally the miscibility and mechanical properties of the blends annealed above Tg are evaluated. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 525–536, 2000  相似文献   

20.
There is significant potential in improving the mechanical, electrical, and thermal properties of engineering plastics, including poly(ether imide) (PEI), with various nanoinclusions such as multiwalled carbon nanotubes (MWCNTs). However, this potential can only be fully realized through a thorough understanding of the rheological behavior and the thermomechanical histories that the nanocomposites are exposed to during their preparation and the resulting effective properties. In this study, nanocomposites of PEI and MWCNTs were prepared using a solution processing method under different dispersion conditions, and the viscoelastic material functions of the nanocomposites were characterized as functions of concentration of CNTs in the 1–5% by weight range (volume fraction, ? = 0.006–0.03) and temperature. The storage modulus and magnitude of complex viscosity values of the PEI nanosuspensions increased by as much as 3500% and 800%, respectively, at ? = 0.03, along with similar orders of magnitude increases observed or predicted in other viscoelastic material functions. Such increases reflect how nanotube incorporation and network formation can drastically alter the flow and deformation behavior of the PEI/CNT nanosuspensions at processing‐relevant temperatures and deformation rates. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号