首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
瞿志荣  熊仁根 《中国化学》2008,26(2):239-242
在加热条件下,手性相转移催化剂氯化- N -(4-乙烯基苄基)辛可尼定(L1)与氯化铜在2-丁醇中反应,可得到一个单一手性的二价铜单分子配合物 N -(4-乙烯基苄基)辛可尼定三氯化铜(1)。配合物(1)和配体(L1)都可用于催化 N -(二苯基亚甲基)氨基乙酸叔丁基酯(3)烷基化反应,催化结果表明:使用配合物N-(4-乙烯基苄基)辛可尼定三氯化铜的反应对映体选择性比使用配体的更高,配合物催化能力的提高可能与配合物中喹啉环的N原子与铜配位、分子刚性增加有关。  相似文献   

2.
The cobalt(II) coordination polymers{[Co(L1)(nda)] · 2H2O}n ( 1 ) and [Co(L2)2(nda)]n ( 2 ), [L1 = 1,2‐bis(2‐methylbenzimidazol‐1‐ylmethyl)benzene, L2 = 1,4‐bis(5,6‐dimethylbenzimidazol‐1‐ylmethyl)benzene, H2nda = 2,6‐naphthalenedicarboxylic acid] were hydrothermally synthesized by self‐assembly of cobalt chloride with H2nda and different semi‐rigid bis(benzimidazole) derivatives and characterized by IR spectroscopy, elemental analysis, and X‐ray single‐crystal diffraction. Complex 1 displays a 2D layer with (4,4) topology, complex 2 exhibits a 1D infinite chain structure, both complexes were further packed into 3D and 2D supramolecular architectures by weak hydrogen bonding. The catalytic activities of the complexes for degradation of Congo red in a Fenton‐like process are presented. In addition, the electrochemical and electrocatalytical behavior of CPEs modified with both cobalt complexes (Co‐CPE) were investigated in detail.  相似文献   

3.
The reaction of 2‐morpholinoethylimino‐bis(methylenephosphonic acid) (H4L) with cobalt(II), nickel(II) acetate, and cadmium(II) chloride in ethanol/water mixed solvents afforded three new crystal‐engineered supramolecular metal phosphonates, Co(H3L)2 · 2H2O ( 1 ), Ni(H3L)2 · 2H2O ( 2 ), and [Cd2Cl4(H2O)6]0.5[H4L] ( 3 ) by using a layering technique. The cobalt(II) ions in complex 1 are hexacoordinated by four phosphonate oxygen atoms and two imino nitrogen atoms. The mononuclear units of complex 1 are connected through hydrogen bonds to form a three dimensional supramolecular network. The structure of compound 2 is analogous to that of 1 except that the cobalt(II) ion in compound 1 is replaced by nickel(II) in compound 2 . In the molecular structure of compound 3 , cadmium is coordinated to three chloride ions and three aqua oxygen atoms to form a novel neutral dinuclear complex. Several hydrogen bonds connect the dinuclear complex and the neutral form of the ligand to build a supramolecular three dimensional structure.  相似文献   

4.
A series of Zn (II), Pd (II) and Cd (II) complexes, [(L) n MX 2 ] m (L = L‐a–L‐c; M = Zn, Pd; X = Cl; M = Cd; X = Br; n, m = 1 or 2), containing 4‐methoxy‐N‐(pyridin‐2‐ylmethylene) aniline ( L‐a ), 4‐methoxy‐N‐(pyridin‐2‐ylmethyl) aniline ( L‐b ) and 4‐methoxy‐N‐methyl‐N‐(pyridin‐2‐ylmethyl) aniline ( L‐c ) have been synthesized and characterized. The X‐ray crystal structures of Pd (II) complexes [L 1 PdCl 2 ] (L = L‐b and L‐c) revealed distorted square planar geometries obtained via coordinative interaction of the nitrogen atoms of pyridine and amine moieties and two chloro ligands. The geometry around Zn (II) center in [(L‐a)ZnCl 2 ] and [(L‐c)ZnCl 2 ] can be best described as distorted tetrahedral, whereas [(L‐b) 2 ZnCl 2 ] and [(L‐b) 2 CdBr 2 ] achieved 6‐coordinated octahedral geometries around Zn and Cd centers through 2‐equivalent ligands, respectively. In addition, a dimeric [(L‐c)Cd(μ ‐ Br)Br] 2 complex exhibited typical 5‐coordinated trigonal bipyramidal geometry around Cd center. The polymerization of methyl methacrylate in the presence of modified methylaluminoxane was evaluated by all the synthesized complexes at 60°C. Among these complexes, [(L‐b)PdCl 2 ] showed the highest catalytic activity [3.80 × 104 g poly (methyl methacrylate) (PMMA)/mol Pd hr?1], yielding high molecular weight (9.12 × 105 g mol?1) PMMA. Syndio‐enriched PMMA (characterized using 1H‐NMR spectroscopy) of about 0.68 was obtained with Tg in the range 120–128°C. Unlike imine and amine moieties, the introduction of N‐methyl moiety has an adverse effect on the catalytic activity, but the syndiotacticity remained unaffected.  相似文献   

5.
Synthesis and characterization of mononuclear transition metal complexes viz., Co(II), Ni(II), Cu(II) and Zn(II) with a newly designed ligand, (E)‐2‐benzamido‐N'‐(1‐(2‐hydroxy‐6‐methyl‐4‐oxo‐4H‐pyran‐3‐yl) ethylidene) benzohydrazide ( H 2 L ) are reported. Molecular structures of H 2 L , Ni(II) and Cu(II) complexes were determined by single‐crystal X‐ray diffraction studies. The structures were stabilized by various intra/inter‐molecular H‐bonding, C‐H···π and π···π stacking interactions. H 2 L exists in zwitterionic form and acts in a monoanionic manner. Ligand/metal ratio was 2:1 for cobalt, nickel and zinc, whereas 1:1 for the copper complex. Co(II), Ni(II) and Zn(II) complexes display distorted octahedral geometry, while the Cu(II) complex shows distorted square pyramidal geometry around the metal ion. Hirshfeld surface analysis and 2D fingerprint plots revealed that H 2 L and its complexes were supported mainly by H?H, O?H and C?H intermolecular interactions. The synthesized compounds were screened for in vitro anti‐inflammatory activity by gelatin zymography and the activity was comparable with tetracycline. Their cleavage behavior towards calf thymus DNA has been studied using agarose gel electrophoresis method. H 2 L and Cu(II) complex were selected by National Cancer Institute (NCI) for in vitro single dose testing in the full NCI 60 cell lines panel assay. Finally, molecular docking simulation effectively proves the binding of all the synthesized compounds at cyclooxygenase‐2 (COX‐2) active sites.  相似文献   

6.
Self‐assembly of Zn (II) or Cd (II) nitrates, flexible bis (pyridyl)‐diamine, as well as arenesulfonic acids, leads to the formation of ten coordination polymers, namely, [Zn(L1)(H2O)3]·2(p‐TS)·2H2O ( 1 ), [Zn(L1)(H2O)2]·2(p‐TS)·2H2O ( 2 ), [Zn(L1)2(p‐TS)2] ( 3 ), [Zn(H2L1)(H2O)4]·2(1,5‐NDS)·2H2O ( 4 ), [Zn(H2L2)(H2O)4]·2(1,5‐NDS)·4MeOH ( 5 ), [Cd(L1)(p‐TS)(NO3)]·H2O ( 6 ), [Cd(L1)(1,5 ‐NDS)0.5(H2O)]·0.5(1,5‐NDS)·H2O ( 7 ), [Cd(L2)(H2O)2]·(p‐TS)·(NO3)·3H2O ( 8 ), [Cd(L2)(1,5‐NDS)] ( 9 ) and [Cd(L2)(1,5‐NDS)]·MeOH ( 10 ) (L1 = N,N′‐bis (pyridin‐4‐ylmethyl) ethane‐1,2‐diamine, L2 = N,N′‐bis (pyridin‐3‐ylmethy l)ethane‐1,2‐diamine, p‐HTS = p‐toluenesulfonic acid, 1,5‐H2NDS = 1,5‐naphthalene disulfonic acid), which have been characterized by elemental analysis, IR, TG, PL, powder and single‐crystal X‐ray diffraction. Complexes 1 , 4 , 5 and 6 present linear or zigzag chain structures accomplished by the interconnection of adjacent M (II) cations through L1 ligands or protonated H2L12+/H2L22+ cations, while complexes 2 , 3 and 8 show similar (4,4) layer motifs constructed from the connection of M (II) cations through L1 and L2. The same coordination modes of L1 and L2 in complexes 7 and 9 join adjacent Cd (II) cations to form double chain structures, which are further connected by bis‐monodentate 1,5‐NDS2? dianions into different (6,3) and (4,4) layer motifs. The L2 molecules in complex 10 join adjacent Cd (II) cations together with 1,5‐NDS2? dianions to form 3D network with hxl topology. Therefore, the diverse coordination modes of the bis (pyridyl) ligand with chelating spacer and the feature of different arenesulfonate anions can effectively influence the architectures of these complexes. Luminescent investigation reveals that the emission maximum of these complexes varies from 374 to 448 nm in the solid state at room temperature, in which complexes 4 , 5 , 7 , 9 and 10 show average luminescence lifetimes from 7.20 to 14.82 ns. Moreover, photocatalytic properties of complexes 7–10 towards Methylene blue under Xe lamp irradiation are also discussed.  相似文献   

7.
Polymer complexes of Co(II), Ni(II), Mn(II), Cr(III) and Cd(II) were prepared by the reaction of 3‐allyl‐5‐[(4‐nitrophenylazo)]‐2‐thioxothiazolidine‐4‐one (HL) with metal ions. The structure of polymer complexes was characterized by elemental analysis, IR, UV–Vis spectra, X‐ray diffraction analysis, magnetic susceptibility, conductivity measurements and thermal analysis. Reaction of HL with Co(II), Ni(II), Mn(II), Cr(III) and Cd(II) ions (acetate or chloride) give polymer complexes ( 1–5 ) with general stoichiometric [M(L)(O2CCH3)(H2O)2]n (where L = anionic of HL and M = Co(II) (1) or Ni(II) (2) ), [Mn(HL)2(OCOCH3)2]n (3) , [Cr(L)2(Cl)(H2O)]n (4) and [Cd(HL)(O2CCH3)2]n (5) . The value of HOMO–LUMO energy gap (ΔE) for forms (A‐C) of monomer (HL) is 2.529, 2.296 and 2.235 eV, respectively. According to ΔE value, compound has minimum ΔE is the more stable, so keto hydrazone form (C) is more stable than the other forms (azo keto form (A), azo enol form (B)). The interaction between HL, polymer complexes of Co(II), Ni(II), Mn(II), Cr(III) and Cd(II) with Calf thymus DNA showed hypochromism effect. The HL and its polymer complexes were tested against some bacterial and fungal species. The results showed that the Cr(III) polymer complex (4) has more antibacterial activity than HL and polymer complexes (1–3 and 5) against Bacillus subtilis, Staphylococcus aureus and Salmonella typhimurium.  相似文献   

8.
A new asymmetric Salamo‐based ligand H2L was synthesized using 3‐tertbutyl‐salicylaldehyde and 6‐methoxy‐2‐[O‐(1‐ethyloxyamide)]‐oxime‐1‐phenol. By adjusting the ratio of the ligand H2L and Cu (II), Co (II), and Ni (II) ions, mononuclear, dinuclear, and trinuclear transition metal (II) complexes, [Cu(L)], [{Co(L)}2], and [{Ni(L)(CH3COO)(CH3CH2OH)}2Ni] with the ligand H2L possessing completely different coordination modes were obtained, respectively. The optical spectra of ligand H2L and its Cu (II), Co (II) and Ni (II) complexes were investigated. The Cu (II) complex is a mononuclear structure, and the Cu (II) atom is tetracoordinated to form a planar quadrilateral structure. The Co (II) complex is dinuclear, and the two Co (II) atoms are pentacoordinated and have coordination geometries of distorted triangular bipyramid. The Ni (II) complex is a trinuclear structure, and the terminal and central Ni (II) atoms are all hexacoordinated, forming distorted octahedral geometries. Furthermore, optical properties including UV–Vis, IR, and fluorescence of the Cu (II), Co (II), and Ni (II) complexes were investigated. Finally, the antibacterial activities of the Cu (II), Co (II), and Ni (II) complexes were explored. According to the experimental results, the inhibitory effect was found to be enhanced with increasing concentrations of the Cu (II), Co (II), and Ni (II) complexes.  相似文献   

9.
Compounds (2‐(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)ethyldiphenylphosphinite ( L1 ), 2‐(3,5‐di‐tert‐butyl‐1H‐pyrazol‐1‐yl)ethyldiphenylphosphinite ( L2 ) , and 2‐(3,5‐diphenyl‐1H‐pyrazol‐1‐yl)ethyldiphenylphosphinite ( L3 ) were prepared using the synthetic routes reported in literature. These compounds were reacted with [NiCl2(DME)2] or [NiBr2(DME)2] under appropriate reaction conditions to afford six new nickel(II) compounds ([NiCl2( L1)] ( 1 ), [NiCl2( L2 )] ( 2 ), [NiCl2( L3 )] ( 3 ), [NiBr2( L1 )] ( 4 ), [NiBr2( L2 )] ( 5 ) and [NiBr2( L3 )] ( 6 )). The new nickel(II) pre‐catalysts catalyze the oligomerization of ethylene, in the presence of ethylaluminium dichloride as co‐catalyst, to produce butenes, hexenes, octenes and higher carbon chain ethylene oligomers with very little Friedel‐Crafts alkylation products when the reactions were run in toluene.  相似文献   

10.
11.
A series of Zn(II) and Cu(II) complexes were synthesized using unsymmetrical N,N′‐ diarylformamidine ligands, i.e. N‐(2‐methoxyphenyl)‐N′‐2,6‐dichorophenyl)‐formamidine ( L1 ), N‐(2‐methoxyphenyl)‐N′‐phenyl)‐formamidine ( L2 ), N‐(2‐methoxyphenyl)‐N′‐(2,6‐dimethylphenyl)‐formamidine ( L3 ) and N‐(2‐methoxyphenyl)‐N′‐(2,6‐diisopropylphenyl)‐formamidine ( L4 ). The complexes, [Zn2( L1 )2(OAc)4] ( 1) , [Zn2( L2 )2(OAc)4] ( 2 ), [Zn2( L3 )2(OAc)4] ( 3 ), [Zn2( L4 )2(OAc)4] ( 4 ), [Cu2( L1 )2(OAc)4] ( 5 ), [Cu2( L2 )2(OAc)4] ( 6 ), [Cu2( L3 )2(OAc)4] ( 7 ) and [Cu2( L4 )2(OAc)4] ( 8 ), were prepared via a mechanochemical method with excellent yields between 95 ‐ 98% by reacting the metal acetates and corresponding ligands. Structural studies showed that both complexes are dimeric with a paddlewheel core structure in which the separation between the two metal centres are 2.9898 (8) and 2.6653 (7) Å in complexes 3 and 7 , respectively. Complexes 1 – 8 were used in ring‐opening polymerization of ε‐caprolactone (ε‐CL) and rac‐lactide (rac‐LA). Zn(II) complexes were more active than Cu(II) complexes, with complex 1 bearing electron withdrawing chloro groups being the most active (kapp = 0.0803 h‐1). Low molecular weight poly‐(ε‐CL) and poly‐(rac‐LA) ranging from 1720 to 6042 g mol‐1, with broad molecular weight distribution (PDIs, 1.78 – 1.87) were obtained. Complex 2 gave reaction orders of 0.56 and 1.52 with respect to ε‐CL and rac‐LA, respectively.  相似文献   

12.
A new coordination polymer, [Co2(L)2(4,4′‐bipy)]n·3nH2O ( 1 ) based on 5‐(3‐methyl‐5‐phenyl‐4H‐1,2,4‐triazol‐4‐yl)isophthalic acid (H2 L ) and 4,4′‐bipyridine (4,4′‐bipy) has been hydrothermally synthesized and characterized by single‐crystal X‐ray diffraction, XRPD, IR, and elemental analysis. Temperature‐dependent magnetic susceptibility and thermal degradation for 1 were also studied. The asymmetric unit of compound 1 consists of two crystallographically independent Co(II) ion, two L 2? ligand, one 4,4′‐bipy ligand, and three lattice water molecules. The 2D triangle networks were linked by the bridging 4,4′‐bipy ligand to give rise to a 2‐fold interpenetrated 3D architecture. The simplest cyclic motif of the 2D networks is a triangle ring consisting of three Co(II) cations and three L 2? ligands. So we can define Co(II) ions as 4‐connected nodes and the L 2? ligands as 3‐connected nodes. Thus, the 3D structure can be described as a 2‐fold parallel interpenetrated ins InS 3,4‐conn topology.  相似文献   

13.
Two macrocyclic ligands based on cyclam with trans‐disposed N‐methyl and N‐(4‐aminobenzyl) substituents as well as two methylphosphinic (H2 L1 ) or methylphosphonic (H4 L2 ) acid pendant arms were synthesised and investigated in solution. The ligands form stable complexes with transition metal ions. Both ligands show high thermodynamic selectivity for divalent copper over nickel(II) and zinc(II)—K(CuL) is larger than K(Ni/ZnL) by about seven orders of magnitude. Complexation is significantly faster for the phosphonate ligand H4 L2 , probably due to the stronger coordination ability of the more basic phosphonate groups, which efficiently bind the metal ion in an “out‐of‐cage” complex and thus accelerate its “in‐cage” binding. The rate of CuII complexation by the phosphinate ligand H2 L1 is comparable to that of cyclam itself and its derivatives with non‐coordinating substituents. Acid‐assisted decomplexation of the copper(II) complexes is relatively fast (τ1/2=44 and 42 s in 1 M aq. HClO4 at 25 °C for H2 L1 and H4 L2 , respectively). This combination of properties is convenient for selective copper removal/purification. Thus, the title ligands were employed in the preparation of ion‐selective resins for radiocopper(II) separation. Glycidyl methacrylate copolymer beads were modified with the ligands through a diazotisation reaction. The separation ability of the modified polymers was tested with cold copper(II) and non‐carrier‐added 64Cu in the presence of a large excess of both nickel(II) and zinc(II). The experiments exhibited high overall separation efficiency leading to 60–70 % recovery of radiocopper with high selectivity over the other metal ions, which were originally present in 900‐fold molar excess. The results showed that chelating resins with properly tuned selectivity of their complexing moieties can be employed for radiocopper separation.  相似文献   

14.
Three multinuclear Cu (II), Zn (II) and Cd (II) complexes, [Cu2(L)(μ‐OAc)]·CHCl2 ( 1 ), [Zn2(L)(μ‐OAc)(H2O)]·3CHCl3 ( 2 ) and [{Cd2(L)(OAc)(CH3CH2OH)}2]·2CH3CH2OH ( 3 ) with a single‐armed salamo‐like dioxime ligand H3L have been synthesized, and characterized by FT‐IR, UV–vis, X‐ray crystallography and Hirshfeld surfaces analyses. The ligand H3L has a linear structure and C‐H···π interactions between the two molecules. The complex 1 is a dinuclear Cu (II) complex, Cu1 and Cu2 are all five‐coordinate possessing distorted square pyramidal geometries. The complex 2 also forms a dinuclear Zn (II) structure, and Zn1 and Zn2 are all five‐coordinate bearing distorted trigonal bipyramidal geometries. The complex 3 is a symmetrical tetranuclear Cd (II) complex, and Cd1 is a hexa‐coordinate having octahedral configuration and Cd2 is hepta‐coordinate with a pentagonal bipyramidal geometry, and it has π···π interactions inside the molecule. In addition, fluorescence properties of the ligand and its complexes 1 – 3 have also been discussed.  相似文献   

15.
Three novel thiocyanato‐bridged polynuclear cadmium(II) complexes, [Cd(HL1)(NCS)2(μ1,3‐NCS)]n ( 1 ), [CdL2(μ1,3‐NCS)2]n ( 2 ), and [CdL3(μ1,3‐NCS)2]n ( 3 ) (L1 = N‐methyl‐N′‐(1‐pyridin‐2‐ylmethylidene)ethane‐1,2‐diamine, L2 = 2‐(cyclopropyliminomethyl)‐6‐methoxyphenol, L3 = 2‐(cyclopentyliminomethyl)‐6‐methoxyphenol), have been synthesized and structurally characterized by elemental analysis, IR spectra and single‐crystal X‐ray diffraction. Each cadmium(II) atom in the complexes is in an octahedral coordination. The urease inhibitory activities of the complexes were evaluated. All of them showed potent inhibitions against jack bean urease.  相似文献   

16.
The preparation and characterization of three metal(II) chlorido complexes with 1,2‐di(1H‐tetrazol‐1‐yl)ethane (dte) ( 1 ) as ligand is presented. The complexes have the following formula: [CoCl2(μ‐dte)(dte)2]n ( 2 ), [CuCl2(μ‐dte)2]n ( 3 ), and [Cd(μ‐Cl)2(μ‐dte)]n ( 4 ). Single crystal X‐ray diffraction of all three metal complexes was performed and the structures are discussed. All three central metal atoms are connected to polynuclear structures by the μ‐bridging ligand. Cobalt and copper are connected to one‐dimensional chains. The central cadmium(II) atoms are additionally connected by the chloride anions to a two‐dimensional network. Further, the cobalt(II) complex represents a special case with two terminal dte ligands.  相似文献   

17.
A symmetric tetradentate Schiff base ligand bis(3‐methoxysalicylidene)‐o‐phenylenediamine (H2L) was prepared. A series of transition metal complexes with this Schiff base ligand have been synthesized and structurally characterized by IR and elemental analysis. The catalysis for reduction of thionyl chloride was studied by means of constant resistance discharge. The result shows that [Mn(III)LCl(H2O)]CH3OH and [Co(II)HLCl(H2O)] have a good catalytic activity for the reduction of thionyl chloride, which improves the cell voltage, the rate of discharge, and the lifetime of Li/SOCl2 batteries.  相似文献   

18.
Two dinuclear mercury(II) iodide compounds, [Hg2(L)(I)4] ( 1 ) and [(L′)Hg(μ‐I)2HgI2]n ( 2 ) [L = N,N′‐bis(phenyl(pyridin‐2‐yl)methylene)propane‐1,2‐diamine and L′ = N‐(phenyl(pyridin‐2‐yl)methylene)propane‐1,2‐diamine] were synthesized and characterized. The molecular structures of [Hg2(L)(I)4] ( 1 ) and [(L′)Hg(μ‐I)2HgI2]n ( 2 ), which were determined by single‐crystal X‐ray diffraction, indicate that each HgII in 1 has a distorted tetrahedral environment around the metal atom with a HgN2I2 chromophore, whereas in 2 one mercury(II) atom adopts a distorted tetrahedral arrangement with a HgI4 chromophore and the other has a distorted square pyramidal environment with HgN3I2 chromophore. In the solid state, compound 2 consists of a 1D coordination polymer structure.  相似文献   

19.
Three novel Schiff base cadmium(II) complexes, derived from the end‐on (μ‐1,1‐N3) azide or end‐to‐end (μ‐1,3‐NCS) thio cyanate bridges and similar tridentate Schiff base ligands, have been synthesized under similar synthetic procedures and their crystal structures determined by X‐ray diffraction methods. They are the dinuclear double end‐on azide‐bridged [Cd2(L1)2(N3)2(μ‐1,1‐N3)2] ( 1 ), the dinuclear double end‐on azide‐bridged [Cd2(L2)2(N3)2(μ‐1,1‐N3)2] ( 2 ), and the dinuclear double end‐to‐end thiocyanate‐bridged [Cd2(L3)2(NCS)2(μ1,3‐NCS)2] ( 3 ), where L1, L2 and L3 are three similar tridentate Schiff bases obtained by condensation of 2‐pyridylaldehyde with N,N‐diethylethane‐1,2‐diamine, of 2‐pyridylaldehyde with N‐isopropylethane‐1,2‐diamine, and of 2‐pyridylaldehyde with N,N‐dimethylpropane‐1,3‐diamine, respectively. Each cadmium(II) centre in the complexes is in a distorted octahedral coordination. There is a crystallographic inversion centre in each of the complexes. The similar small ligands used as the secondary ligands in the preparation of the cadmium(II) complexes with similar Schiff bases can result in similar structures.  相似文献   

20.
Four novel Zinc–NHC alkyl/alkoxide/chloride complexes ( 4 , 5 , 9 and 9′ ) were readily prepared and fully characterized, including X‐ray diffraction crystallography for 5 and 9′ . The reaction of N‐methyl‐N′‐butyl imidazolium chloride ( 3.HCl ) with ZnEt2 (2 equiv.) afforded the corresponding [(CNHC)ZnCl(Et)] complex ( 4 ) via a protonolysis reaction, as deduced from NMR data. The alcoholysis of 4 with BnOH led to quantitative formation of the dinuclear Zn(II) alkoxide species [(CNHC)ZnCl(OBn)]2 ( 5 ), as confirmed by X‐ray diffraction analysis. The NMR data are in agreement with species 5 retaining its dimeric structure in solution at room temperature. The protonolysis reaction of N‐(2,6‐diisopropylphenyl)‐N′‐ethyl methyl ether imidazolium chloride ( 8.HCl ) with ZnEt2 (2 equiv.) yielded the [(CNHC)ZnCl(Et)] species 9 . The latter was found to be reactive with CH2Cl2 in solution and to cleanly convert to the corresponding Zn(II) dichloride [(CNHC)ZnCl2]2 ( 9′ ), whose molecular structure was also elucidated using X‐ray diffractometry. Unlike Zn(II)–NHC alkoxide species 1 and 2 , which contain a NHC flanked with an additional N‐functional group (i.e. thioether and ether, respectively), the Zn(II) alkoxide species 5 incorporates a monodentate NHC ligand. The Zn(II) complexes 1 , 2 and 5 were tested in the ring‐opening polymerization (ROP) of trimethylene carbonate (TMC). All three species are effective initiators for the controlled ROP of trimethylene carbonate, resulting in the production of narrow disperse PTMC material. Initiator 1 (incorporating a thioether moiety) was found to perform best in the ROP of TMC. Notably, the latter also readily undergoes the sequential ROP of TMC and rac‐LA in the presence of a chain‐transfer agent, leading to well‐defined and high‐molecular‐weight PTMC/PLA block copolymers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号