首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homo‐ and copolymers of di(ethylene glycol) methyl ether methacrylate (DEGMA) and oligo(ethyleneglycol) methyl ether methacrylate (OEGMA1100) were synthesized with various chain lengths via reversible addition fragmentation chain transfer (RAFT) polymerization in ethanol using [M]/[RAFT] ratios of 100 and 200. Kinetic investigations on the homo‐ and copolymerization of these monomers were performed using a parallel synthesizer resulting in well‐defined polymers with polydispersity indices mostly below 1.3. The polymerization kinetics are presented and discussed in detail surprisingly revealing that the DEGMA homopolymerization is slower than the OEGMA1100 homopolymerization. Transfer coefficients c were estimated to be ~0.5 for the RAFT polymerization of both DEGMA and OEGMA1100 resulting in hybrid behavior at the beginning of the polymerizations. Subsequent copolymerization also revealed fast incorporation of the OEGMA1100 and relatively slow incorporation of DEGMA resulting in well‐defined copolymers with a molecular weight up to 100 kDa and polydispersities around 1.20. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2811–2820, 2009  相似文献   

2.
Nitroxide‐mediated radical polymerization has been used for the preparation of pentafluorostyrene (PFS) homopolymers and random copolymers of PFS and oligo(ethyleneglycol) methacrylate (OEGMA8.5). The poly(pentafluorostyrene) homopolymers were reacted with thiophenol at different ratios at room temperature in the presence of triethylamine. The “clicked” polymers were characterized by 1H and 19F NMR spectroscopy and size exclusion chromatography. Moreover, the copolymerization kinetics of the PFS and OEGMA8.5 copolymers was followed, and the phase transition behavior of random copolymers with different compositions was discussed. Furthermore, copolymers of PFS and 2‐(dimethylamino) ethyl methacrylate (DMAEMA) were prepared at various mole ratios, and the copolymer with a 10:90 ratio, respectively, was soluble in water at room temperature. Turbidimetry measurements were performed for PFS and OEGMA8.5 or DMAEMA copolymers to determine their cloud points. Finally, the PFS and OEGMA8.5 copolymer with a mole ratio of 60:40 was reacted further with thiophenol to increase the hydrophobic part in the copolymer. The cloud points of the obtained copolymers could be tuned from 87 to 33 °C by using not only the controlled radical polymerization but also the “click” reaction in a controlled fashion. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1278–1286, 2010  相似文献   

3.
Novel biocompatible, biodegradable, four‐arm star, triblock copolymers containing a hydrophobic poly(ε‐caprolactone) (PCL) segment, a hydrophilic poly(oligo(ethylene oxide)475 methacrylate) (POEOMA475) segment and a thermoresponsive poly(di(ethylene oxide) methyl ether methacrylate) (PMEO2MA) segment were synthesized by a combination of controlled ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). First, a four‐arm PCL macroinitiator [(PCL‐Br)4] for ATRP was synthesized by the ROP of ε‐caprolactone (CL) catalyzed by stannous octoate in the presence of pentaerythritol as the tetrafunctional initiator followed by esterification with 2‐bromoisobutyryl bromide. Then, sequential ATRP of oligo(ethylene oxide) methacrylate (OEOMA475, Mn = 475) and di(ethylene oxide) methyl ether methacrylate) (MEO2MA) were carried out using the (PCL‐Br)4 tetrafunctional macroinitiator, in different sequence, resulting in preparation of (PCL‐b‐POEOMA475‐b‐PMEO2MA)4 and (PCL‐b‐PMEO2MA‐b‐POEOMA475)4 star triblock copolymers. These amphiphilic copolymers can self‐assemble into spherical micelles in aqueous solution at room temperature. The thermal responses of the polymeric micelles were investigated by dynamic light scattering and ultraviolet spectrometer. The properties of the two series of copolymers are quite different and depend on the sequence distribution of each block along the arms of the star. The (PCL‐b‐POEOMA475‐b‐PMEO2MA)4 star copolymer, with the thermoresponsive PMEO2MA segment on the periphery, can undergo reversible sol‐gel transitions between room temperature (22 °C) and human body temperature (37 °C). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
Statistical copolymers of 2-vinylpyridine (VP) with oligo(ethylene glycol) methyl ether methacrylates of two different molecular weights (300 g/mol (OEGMA300) and 1100 g/mol (OEGMA1100)), were prepared by free radical polymerization. The reactivity ratios of these two sets of monomers were estimated using the Finemann–Ross, the inverted Finemann–Ross and the Kelen–Tüdos graphical methods. Structural parameters of the copolymers were obtained by calculating the dyad monomer sequence fractions and the mean sequence length. The effect of the length of the oligo(ethylene glycol) group on the copolymer structure is discussed. The glass-transition temperature (Tg) values of the VP copolymers with OEGMA300 were measured and examined in the frame of several theoretical equations, allowing the prediction of these Tg values. The copolymers of VP with OEGMA1100 exhibited the characteristic melting endotherm, due to the crystallinity of the methacrylate sequences and glass transition temperatures attributed to the PVP sequences.  相似文献   

5.
Statistical copolymers of di(ethylene glycol) methyl ether methacrylate (MEO2MA) and tri(ethylene glycol) methyl ether methacrylate (MEO3MA) were synthesized by atom transfer radical polymerization (ATRP) providing copolymers with controlled composition and molecular weights ranging from Mn = 8,300–56,500 with polydispersity indexes (Mw/Mn) between 1.19 and 1.28. The lower critical solution temperature (LCST) of the copolymers increased with the mole fraction of MEO3MA in the copolymer over the range from 26 to 52 °C. The average hydrodynamic diameter, measured by dynamic light scattering, varied with temperature above the LCST. These two monomers were also block copolymerized by ATRP to form polymers with molecular weight of Mn = 30,000 and Mw/Mn from 1.12 to 1.21. The LCST of the block copolymers shifted toward the LCST of the major segment, as compared to the value measured for the statistical copolymers at the same composition. As temperature increased, micelles, consisting of aggregated PMEO2MA cores and PMEO3MA shell, were formed. The micelles aggregated upon further heating to precipitate as larger particles. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 194–202, 2008  相似文献   

6.
Copolymers of methacrylic acid (MAA) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) were prepared and their cloud points in aqueous solution were studied as a function of comonomer ratio, solution pH, and presence of hydrophobic comonomers. Under acidic conditions, the cloud point falls below 0 °C for copolymers with between 25% to 60% ether content, because of the formation of hydrophobic H‐bonded ether–acid complexes. The cloud point also decreases with solution pH. For equivalent ether to acid ratios, the cloud point decreases with decreasing PEG chain length, because of the presence of a larger number of hydrophobic methyl and methacrylate groups. Similarly, the cloud point decreases upon incorporation of hydrophobic comonomers such as butyl, lauryl, or glycidyl methacrylates. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6095–6104, 2005  相似文献   

7.
刘守信 《高分子科学》2016,34(8):965-980
A double thermoresponsive ABC-type triblock copolymer(poly(ethyleneglycol)-block-poly(2-(2-methoxyethoxy) ethyl methacrylate)-block-poly(2-(2-methoxy ethoxy) ethyl methacrylate-co-oligo(ethylene glycol) methyl ether methacrylate, PEG-b-PMEO_2MA-b-P(MEO_2MA-co-OEGMA)) was designed and synthesized by reversible additionfragmentation chain transfer polymerization(RAFT). The ABC-type triblock copolymer endowed a thermal-induced twostep phase transition at 29 and 39 °C, corresponding to the thermosensitive properties of PMEO_2 MA and P(MEO_2MA-coOEGMA) segments, respectively. The two-step self-assembly of copolymer solutions was studied by UV transmittance measurement, dynamic light scattering(DLS), transmission electron microscopy(TEM) and so on. The triblock copolymers showed the distinct thermosensitive behavior with respect to transition temperatures, aggregate type and size, which was correlated to the degree of polymerization of thermosensitive blocks and the molar fraction of OEGMA in the P(MEO_2MAco-OEGMA) segments. In addition, micelles could further aggregate to form the hydrogel by the self-associate of PEG chains under the abduction of the concentration and temperature. The transition from sol to gel was investigated by a test tube inverting method and dynamic rheological measurement.  相似文献   

8.
Well‐defined thermoresponsive polymers obtained by the atom transfer radical polymerization (ATRP) of short oligo(ethylene glycol) methyl ether methacrylates (MEOnMA, n = 2, 3, or 8) with small ratios of a thiolated comonomer, 2‐(acetylthio)ethylmethacrytale, can replace the hydrophobic trioctylphosphine oxide (TOPO) capping of CdSe quantum dots (QDs). After this facile ligand exchange, the mild hydrolysis of the acetylthiol group into thiol is the key to enhance the QD luminescence. However, the length of the ethylene glycol side chain is critical for the success of the functionalization; it is established that the shortest MEO2MA‐based copolymers result in a compact coating and a highest quantum yield (up to a factor of 6) when compared with that of CdSe@TOPO in dichloromethane. In addition, the amphiphilic character of the copolymer allows the CdSe@P(MEOnMA‐co‐SEMA) nanohybrids to disperse in water. On the other hand, the residual ionizable thiol groups do not get attached to the QD surface, cause that the lower critical solubility temperature of the polymer depends on pH as well. Thus, at acidic pH, an abrupt increase in the luminescence emission accompanies the polymer collapse, which establishes the promise of these hybrids as temperature/pH nanosensors and targeted drug delivery. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3087–3095  相似文献   

9.
Poly(N‐vinylcaprolactam) (PVCL) and poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) are well known for their thermoresponsive behavior in aqueous solutions. Indeed, they display lower critical solution temperatures (LCST) in the physiological range, which makes them interesting for biomedical devices and use in drug delivery systems. Homopolymers of N‐vinylcaprolactam and di(ethylene glycol) methyl ether methacrylate as well as copolymers thereof were synthesized by solution and direct miniemulsion polymerizations. The cloud points of the copolymers in aqueous solution were investigated as a function of temperature, comonomer ratio, and in the presence of model pharmaceutical ingredients. By variation of the comonomer ratio, it was possible to control the cloud point temperature between 26 and 35 °C, which was found to be beneficial to attenuate the effect of the drugs that also altered the cloud points. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3308–3313  相似文献   

10.
RAFT polymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA, 1100 g mol?1) was first performed using cyanoisopropyl dithiobenzoate (CPDB). The control of PEGMA homopolymerization, carried out in THF ([PEGMA] = 40 wt %) at 65 °C (reflux) using 2,2′‐Azobis(isobutyronitrile) (AIBN) as initiator, was shown by the linear increase of molar masses and the low polydispersity indices (PDI) observed with conversion and also by the determination of a high chain transfer constant (Ctr = 9.1) for CPDB in this system. Copolymerization of PEGMA with methacrylic acid (MAA) ([PEGMA]/[MAA] = 40/60) was then undertaken first in dioxane at 85 °C. High conversion (89%) was obtained in 3 h without any composition drift and with a good level of control (PDI < 1.40). When the polymerization was performed in water, a strong increase in polymerization rate was observed with almost quantitative conversion (98%) in 2 h without affecting the level of control of the final copolymers (PDI ~ 1.30). These last results were tentatively explained by the formation of hydrophobic domains in which the polymerization occurred as in bulk. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3045–3055, 2009  相似文献   

11.
In this study, a novel library of thermoresponsive homopolymers based on poly (ethylene glycol) (EG) (m)ethyl ether methacrylate monomers is presented. Twenty-seven EG based homopolymers were synthesized and three parameters, the molar mass (MM), the number of the ethylene glycol groups in the monomer, and the chemistry of the functional side group were varied to investigate how these affect their thermoresponsive behavior. The targeted MMs of these polymers are varied from 2560, 5000, 8200 to 12,000 g mol−1. Seven PEG-based monomers were investigated: ethylene glycol methyl ether methacrylate (MEGMA), ethylene glycol ethyl ether methacrylate (EEGMA), di(ethylene glycol) methyl ether methacrylate (DEGMA), tri(ethylene glycol) methyl ether methacrylate (TEGMA), tri(ethylene glycol) ethyl ether methacrylate (TEGEMA), penta(ethylene glycol) methyl ether methacrylate (PEGMA), nona(ethylene glycol) methyl ether methacrylate (NEGMA). Homopolymers of 2-(dimethylamino) ethyl methacrylate (DMAEMA) were also synthesized for comparison. The cloud points of these homopolymers were tested in different solvents and it was observed that it decreases as the number of EG group was decreased or the MM increased. Interestingly, the end functional group (methoxy or ethoxy) of the side group has an effect as well and is even more dominant than the number of EG groups.  相似文献   

12.
Here we report the preparation of PEG‐based thermoresponsive hyperbranched polymers via a facile in situ reversible addition‐fragmentation chain transfer (RAFT) copolymerization using bis(thiobenzoyl) disulphide to form 2‐cyanoprop‐2‐yl dithiobenzoate in situ. This novel one‐pot in situ RAFT approach was studied firstly using methyl methacrylate (MMA) monomer, then was used to prepare thermoresponsive hyperbranched polymers by copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMEMA, Mn = 475), poly(propylene glycol) methacrylate (PPGMA, Mn = 375) and up to 30 % of ethylene glycol dimethacrylate (EGDMA) as the branching agent. The resultant PEGMEMA‐PPGMA‐EGDMA copolymers from in situ RAFT were characterized by Gel Permeation Chromatography (GPC) and 1H‐NMR analysis. The results confirmed the copolymers with multiple methacrylate groups and hyperbranched structure as well as RAFT functional residues. These water‐soluble copolymers with tailored compositions demonstrated tuneable lower critical solution temperature (LCST) from 22 °C to 32 °C. The phase transition temperature can be further altered by post functionalization via aminolysis of RAFT agent residues in polymer chains. Moreover, it was demonstrated by rheological studies and particle size measurements that these copolymers can form either micro‐ or macro photocrosslinked gels at suitable concentrations due to the presence of multiple methacrylate groups. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3751–3761  相似文献   

13.
Radical copolymerizations of 2‐isothiocyanatoethyl methacrylate (ITEMA) and 2‐hydroxyethyl methacrylate (HEMA) or methacrylic acid (MAA) were examined, and fundamental properties of the obtained copolymers were investigated. The copolymerizations of various ITEMA/HEMA or ITEMA/MAA compositions proceeded effectively in THF or DMF by using 2,2′‐azobisbutyronitrile (AIBN) as an initiator, keeping the isothiocyanato groups and hydroxyl or carboxyl groups unchanged. Glass transition temperatures (Tg)s of poly(ITEMA‐co‐HEMA)s ranged from 68 to 100 °C, and they were thermally stable up to 200 °C. Meanwhile, Tgs of poly(ITEMA‐co‐MAA)s (ITEMA/MAA = 91/9, 76/24) were determined to be 91 and 109 °C, respectively. However, poly(ITEMA‐co‐MAA)s were thermally unstable, and significant weight loss was observed around 180 °C, which may be due to an addition of carboxyl groups to isothiocyanato groups followed by an elimination of COS to form amide structure in the copolymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5221–5229  相似文献   

14.
A series of novel graft copolymers consisting of perfluorocyclobutyl aryl ether‐based backbone and poly(methyl methacrylate) side chains were synthesized by the combination of thermal [2π + 2π] step‐growth cycloaddition polymerization of aryl bistrifluorovinyl ether monomer and atom transfer radical polymerization (ATRP) of methyl methacrylate. A new aryl bistrifluorovinyl ether monomer, 2‐methyl‐1,4‐bistrifluorovinyloxybenzene, was first synthesized in two steps from commercially available reagents, and this monomer was homopolymerized in diphenyl ether to provide the corresponding perfluorocyclobutyl aryl ether‐based homopolymer with methoxyl end groups. The fluoropolymer was then converted to ATRP macroinitiator by the monobromination of the pendant methyls with N‐bromosuccinimide and benzoyl peroxide. The grafting‐from strategy was finally used to obtain the novel poly(2‐methyl‐1,4‐bistrifluorovinyloxybenzene)‐g‐poly(methyl methacrylate) graft copolymers with relatively narrow molecular weight distributions (Mw/Mn ≤ 1.46) via ATRP of methyl methacrylate at 50 °C in anisole initiated by the Br‐containing macroinitiator using CuBr/dHbpy as catalytic system. These fluorine‐containing graft copolymers can dissolve in most organic solvents. This is the first example of the graft copolymer possessing perfluorocyclobutyl aryl ether‐based backbone. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
A variety of conditions, including catalysts [CuCl, CuI, Cu2O, and Cu(0)], ligands [2,2′‐bipyridine (bpy), tris(2‐dimethylaminoethyl)amine (Me6‐TREN), polyethyleneimine, and hexamethyl triethylenetetramine], initiators [CH3CHClI, CH2I2, CHI3, and F(CF2)8I], solvents [diphenyl ether, toluene, tetrahydrofuran, dimethyl sulfoxide (DMSO), dimethylformamide, ethylene carbonate, dimethylacetamide, and cyclohexanone], and temperatures [90, 25, and 0 °C] were studied to assess previous methods for poly(methyl methacrylate)‐b‐poly(vinyl chloride)‐b‐poly(methyl methacrylate) (PMMA‐b‐PVC‐b‐PMMA) synthesis by the living radical block copolymerization of methyl methacrylate (MMA) initiated with α,ω‐di(iodo)poly(vinyl chloride). CH3CHClI was used as a model for α,ω‐di(iodo)poly(vinyl chloride) employed as a macroinitiator in the living radical block copolymerization of MMA. Two groups of methods evolved. The first involved CuCl/bpy or Me6‐TREN at 90 °C, whereas the second involved Cu(0)/Me6‐TREN in DMSO at 25 or 0 °C. Related ligands were used in both methods. The highest initiator efficiency and rate of polymerization were obtained with Cu(0)/Me6‐TREN in DMSO at 25 °C. This demonstrated that the ultrafast block copolymerization reported previously is the most efficient with respect to the rate of polymerization and precision of the PMMA‐b‐PVC‐b‐PMMA architecture. Moreover, Cu(0)/Me6‐TREN‐catalyzed polymerization exhibits an external first order of reaction in DMSO, and so this solvent has a catalytic effect in this living radical polymerization (LRP). This polymerization can be performed between 90 and 0 °C and provides access to controlled poly(methyl methacrylate) tacticity by LRP and block copolymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1935–1947, 2005  相似文献   

16.
Homopolymerization and diblock copolymerization of 2‐hydroxypropyl acrylate (HPA) has been conducted using reversible addition fragmentation chain transfer (RAFT) chemistry in tert‐butanol at 80 °C. PHPA homopolymers were obtained with high conversions and narrow molecular weight distributions over a wide range of target degrees of polymerization. Like its poly(2‐hydroxyethyl methacrylate) isomer, PHPA homopolymer exhibits inverse temperature solubility in dilute aqueous solution, with cloud points increasing systematically on lowering the mean chain length. The nature of the end groups is shown to significantly affect the cloud point, whereas no effect of concentration was observed over the PHPA concentration range investigated. Various thermoresponsive PHPA‐based diblock copolymers were prepared via one‐pot syntheses in which the second block was either permanently hydrophilic or pH‐responsive. Preliminary studies confirmed that poly(ethylene oxide)‐poly(2‐hydroxypropyl acrylate) (PEO45‐PHPA48) and poly(2‐hydroxypropyl acrylate)‐ poly(2‐hydroxyethyl acrylate) (PHPA49‐PHEA68)diblock copolymers formed well‐defined PHPA‐core micelles in 10 mM sodium nitrate solution at 40 °C and 70 °C with mean hydrodynamic diameters of 20 nm and 35 nm, respectively. In contrast, most other PHPA‐based diblock copolymers investigated formed larger colloidal aggregates in 10 mM NaNO3 solution at elevated temperatures. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2032–2043, 2010  相似文献   

17.
ABCBA‐type pentablock copolymers of methyl methacrylate, styrene, and isobutylene (IB) were prepared by the cationic polymerization of IB in the presence of the α,ω‐dichloro‐PS‐b‐PMMA‐b‐PS triblock copolymer [where PS is polystyrene and PMMA is poly(methyl methacrylate)] as a macroinitiator in conjunction with diethylaluminum chloride (Et2AlCl) as a coinitiator. The macroinitiator was prepared by a two‐step copper‐based atom transfer radical polymerization (ATRP). The reaction temperature, ?78 or ?25 °C, significantly affected the IB content in the resulting copolymers; a higher content was obtained at ?78 °C. The formation of the PIB‐b‐PS‐b‐PMMA‐b‐PS‐b‐PIB copolymers (where PIB is polyisobutylene), prepared at ?25 (20.3 mol % IB) or ?78 °C (61.3 mol % IB; rubbery material), with relatively narrow molecular weight distributions provided direct evidence of the presence of labile chlorine atoms at both ends of the macroinitiator capable of initiation of cationic polymerization of IB. One glass‐transition temperature (Tg), 104.5 °C, was observed for the aforementioned triblock copolymer, and the pentablock copolymer containing 61.3 mol % IB showed two well‐defined Tg's: ?73.0 °C for PIB and 95.6 °C for the PS–PMMA blocks. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3823–3830, 2005  相似文献   

18.
A series of water‐soluble thermoresponsive hyperbranched copoly(oligoethylene glycol)s were synthesized by copolymerization of di(ethylene glycol) methacrylate (DEG‐MA) and oligo(ethylene glycol) methacrylate (OEG‐MA, Mw = 475 g/mol), with ethylene glycol dimethacrylate (EGD‐MA) used as the crosslinker, via reversible addition fragmentation chain transfer polymerization. Polymers were characterized by size exclusion chromatography and nuclear magnetic resonance analyses. According to the monomer composition, that is, the ratio of OEG‐MA: DEG‐MA: EGD‐MA, the lower critical solution temperature (LCST) could be tuned from 25 °C to 90 °C. The thermoresponsive properties of these hyperbranched copolymers were studied carefully and compared with their linear analogs. It was found that molecular architecture influences thermoresponsive behavior, with a decrease of around 5–10 °C in the LCST of the hyperbranched polymers compared with the LCST of linear chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2783–2792, 2010  相似文献   

19.
Ringlike polar monomer maleic, anhydride (MAn) was copolymerized with oligo (oxyethylene) methacrylate (MEO_n), and its effect on ion conduction property of the corresponding polymer-salt complexes was studied. As a consequence the introduction of MAn onto polymer chain retards crystallization of the ether pendants considerably, and improves the ion conductivity to a larger degree compared with other polar groups once investigated (σ_(max),25℃=8.5×10~(-5) S/cm). The structure-ion conduction relation in the polymer-salt matrix is also analyzed macroscopically through the correspondence between composition-dependences of polymerization conversion and isothermal ion conductivity, and microscopically through the measurements of cross polarized light and electron transmission.  相似文献   

20.
This article reports on the synthesis of a novel amphiphilic polyhedral oligomeric silsesquioxane (POSS) end-capped poly(2-(2-methoxyethoxy)ethyl methacrylate)-co-oligo(ethylene glycol) methacrylate) (POSS-P(MEO2MA-co-OEGMA)). These thermoresponsive organic–inorganic hybrid polymers exhibit critical phase transition temperature in water, which can be finely tuned by changing the feed ratio of OEGMA and MEO2MA. The lower critical solution temperature (LCST) of POSS-P(MEO2MA-co-OEGMA) increases from 31 to 59 °C with the increasing of OEGMA content. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) studies show that these polymers can self-assemble into spherical micelles with the thermosensitive block into the corona and the POSS forming the core, and larger aggregates are formed when the temperature values are above their LCSTs. These thermoresponsive polymers POSS-P(MEO2MA-co-OEGMA) with self-assembly behavior and tunable tempetature-responsive property have the potential applications in material science and biotechnology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号