首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A series of sulfopropylated and sulfobutylated polyimide copolymers containing fluorenyl groups, SPI‐4, were synthesized to investigate the effect of alkyl side chains on the properties (stability, mechanical strength, water uptake, and proton conductivity) of the polymimide electrolyte membranes. SPI‐4 showed much better hydrolytic stability (in 10% MeOH aq at 100 °C) than the main chain sulfonated polyimide, SPI‐1. Tough, flexible, and ductile membranes were obtained from these copolymers. At high relative humidity all the SPI‐4 membranes showed high mechanical properties (>34 MPa of the maximum stress) and proton conductivity (>0.1 Scm?1). These properties are comparable to or even better than those of the perfluorosulfonic acid ionomer (Nafion 112). The new polyimide ionomers have proved to be a possible candidate as polymer electrolyte membrane for PEFCs and DMFCs. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4439–4445, 2005  相似文献   

3.
A series of novel sulfonated polyimides (equivalent weight per sulfonic acid = 310–744 g/equiv) containing 10–70 mol % 1,5‐naphthylene moieties were synthesized as potential electrolyte materials for high‐temperature polymer electrolyte fuel cells. The polycondensation of 1,4,5,8‐naphthalene tetracarboxylic dianhydride, 4,4′‐diamino‐2,2′‐biphenyldisulfonic acid, and 1,5‐diaminonaphthalene gave the title polymer electrolytes. The polyimide electrolytes were high‐molecular‐weight (number‐average molecular weight = 36.0–350.7 × 103 and weight‐average molecular weight = 70.4–598.5 × 103) and formed flexible and tough films. The thermal properties (decomposition temperature > 260 °C, no glass‐transition temperature), stability to oxidation, and water absorption were analyzed and compared with those of perfluorosulfonic acid polymers. The polyimide containing 20 mol % 1,5‐naphthylene moieties showed higher proton conductivity (0.3 S cm?1) at 120 °C and 100% relative humidity than perfluorosulfonic acid polymers. The temperature and humidity dependence of the proton conductivity was examined. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3901–3907, 2003  相似文献   

4.
Sulfonated polyimides with tertiary nitrogen in the polymer backbone were synthesized with 1,4,5,8‐naphthalenetetracarboxylic dianhydride, 4,4′‐diaminobiphenyl 2,2′‐disulfonic acid, 2‐bis[4‐(4‐aminophenoxy)phenyl]hexafluoropropane, and diaminoacrydine hemisulfate. They were crosslinked with a series of dibromo alkanes to improve the hydrolytic stability. The crosslinked sulfonated polyimide films were characterized for their thermal stability, ion‐exchange capacity (IEC), water uptake, hydrolytic stability, and proton conductivity. All the sulfonated polyimides had good thermal stability and exhibited a three‐step degradation pattern. With an increase in the alkyl chain length of the crosslinker, IEC decreased as 1.23 > 1.16 > 1.06 > 1.01, and the water uptake decreased as 7.29 > 6.70 > 6.55 > 5.63. The order of the proton conductivity of the crosslinked sulfonated polyimides at 90 °C was as follows: polyimide crosslinked with dibromo butane (0.070) > polyimide crosslinked with dibromo hexane (0.055) > polyimide crosslinked with dibromo decane (0.054). The crosslinked polyimides showed higher hydrolytic stability than the uncrosslinked polyimides. Between the crosslinked polyimides, the hydrolytic stability decreased with an increase in the alkyl chain length of the crosslinker. The crosslinked and uncrosslinked sulfonated polyimides exhibited almost the same proton conductivities. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2370–2379, 2005  相似文献   

5.
6.
A series of novel polyimide electrolytes having long pendant sulfo‐ or phosphoalkoxy groups were synthesized for fuel‐cell applications. Sulfodecyloxy‐, phosphodecyloxy‐, and sulfophenoxydodecyloxy‐substituted benzidine monomers were synthesized from dihydroxybenzidine. These monomers were copolymerized with naphthalene tetracarboxylic dianhydride and fluorenylidene dianiline to give the corresponding polyimides. A flexible, ductile, and self‐standing membrane was obtained via casting from the polyimide solution. Because the acid groups were on long pendant side chains and away from the main chains, the polyimide membrane showed improved oxidative and hydrolytic stability in comparison with the polyimides with sulfonic acid groups on the main chains or on the short side chains. High thermal stability (no glass‐transition temperature and a decomposition temperature > 200 °C) was also obtained. The polyimide membrane displayed high proton conductivity of 10?1 S cm?1 at 120 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3995–4005, 2006  相似文献   

7.
A new series of sulfonated polyimide (SPI) copolymers containing NH, OH, or COOH groups were synthesized by the polycondensation of 1,4,5,8‐naphthalnetetracarboxylic dianhydride, 3,3′‐bis(sulfopropoxy)‐4,4′‐diaminobiphenyl, and 3‐(4‐aminophenyl)‐5‐(3‐aminophenyl)‐1H‐1,2,4‐triazole (SPI‐8‐m), 3,5‐bis(4‐aminophenyl)‐1H‐1,2,4‐triazole (SPI‐8‐p), 3,6‐diaminocarbazole (SPI‐9), 3,5‐diamino‐1H‐1,2,4‐triazole (SPI‐10), bis(3‐aminopropyl)‐amine (SPI‐11), 2,6‐diaminopurine (SPI‐12), 2,4‐diamino‐6‐hydroxyprymidine (SPI‐13), or 3,5‐bis(4‐aminophenoxy)benzoic acid (SPI‐14). The obtained SPIs were soluble in polar organic solvents and gave tough and flexible membranes by solution casting. The SPI membranes having NH and COOH groups showed high thermal (decomposition temperature ≈200 °C) and mechanical (maximum stress >22 MPa) stability. Introducing NH groups, especially triazole and carbazole groups, was effective in improving proton conductive properties of SPI membranes at low humidity. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2846–2854, 2010  相似文献   

8.
A series of sulfonated polyimides with increasing alkyl substituents in the o‐position to diamine were synthesized from 4,4′‐methylene dianiline, 4,4′‐diamine‐3,3′‐dimethyl‐diphenylmethane, and 4,4′‐diamine‐3,5,3′,5′‐tetraethyl‐diphenylmethane using 1,4,5,8‐naphthalenetetracarboxylic dianhydride and perylenetetracarboxylic dianhydride by chemical imidization method. 4,4′‐Diaminobiphenyl 2,2′‐disulfonic acid was used as sulfonated diamine. The variation in the membrane properties with increase in substitution was analyzed. Solubility increased with substitution whereas the thermal stability decreased with increase in substitution. Ion exchange capacity and water uptake reduced with increase in substitution because of the low sulfonic acid content at a particular weight due to the increased molecular weight of the repeating unit. The conductivity of the substituted diamines was higher than the unsubstituted diamines at higher temperature regardless of low ion exchange capacity and water uptake. The increase in conductivity with increase in temperature was more rapid in polyimides than in Nafion®115. Hydrolytic stability of the polyimides with substitution is more than the unsubstituted diamines. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3621–3630, 2004  相似文献   

9.
A series of six‐membered sulfonated polyimides were synthesized using 1,4,5,8‐naphthalenetetracarboxylic dianhydride, 4,4′‐diaminobiphenyl 2,2′‐disulfonic acid as the sulfonated diamine, and various nonsulfonated diamine monomers having different bridging groups. These bulky bridging groups have the capacity to increase hydrolytic stability and proton conductivity. Polyimides with bulky bridging groups showed increased solubility but exhibited lower thermal stability. The ion exchange capacity and water uptake reduced with increase in the bulkiness of the bridging group. This was attributed to the increase in the molecular weight of the repeating unit and hence effectively reduced the sulfonic acid content. In low temperatures, the conductivity was lower than Nafion®115 and, with increase in temperature, the conductivity rapidly increased and exhibited better conductivity than Nafion®115. Polyimides with bulky bridging groups 4‐amino phenyl sulfone, and 2‐bis[4‐(4‐aminophenoxy)phenyl]hexafluoropropane showed higher conductivity than other polyimides and Nafion®115 despite low ion exchange capacity. The hydrolytic stability of the polyimides with bulky bridging groups was higher than the polyimides with less bulky atoms because of the imparted flexibility. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3612–3620, 2004  相似文献   

10.
11.
A series of block copoly(arylene ether)s containing pendant superacid groups were synthesized, and their properties were investigated for fuel cell applications. Two series of telechelic oligomers, iodo‐substituted oligo(arylene ether ketone)s and oligo(arylene ether sulfone)s, were synthesized. The degree of oligomerization and the end groups were controlled by changing the feed ratio of the monomers. The nucleophilic substitution polymerization of the two oligomers provided iodo‐substituted precursor block copolymers. The iodo groups were converted to perfluorosulfonic acid groups via the Ullmann coupling reaction. The high degree of perfluorosulfonation (up to 83%) was achieved by optimizing the reaction conditions. Tough and bendable membranes were prepared by solution casting. The ionomer membranes exhibited characteristic hydrophilic/hydrophobic phase separation with large hydrophilic clusters (ca. 10 nm), which were different from that of our previous random copolymers with similar molecular structure. The block copolymer structure was found to be effective in improving the proton‐conducting behavior of the superacid‐modified poly(arylene ether) ionomer membranes without increasing the ion exchange capacity (IEC). The highest proton conductivity was 0.13 S/cm at 80 °C, 90% relative humidity, for the block copolymer ionomer membrane with IEC = 1.29 mequiv/g. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
Novel sulfonated diamines bearing aromatic pendant groups, namely, 3,5‐diamino‐3′‐sulfo‐4′‐(4‐sulfophenoxy) benzophenone (DASSPB) and 3,5‐diamino‐3′‐sulfo‐4′‐(2,4‐disulfophenoxy) benzophenone (DASDSPB), were successfully synthesized. Novel side‐chain‐type sulfonated (co)polyimides (SPIs) were synthesized from these two diamines, 1,4,5,8‐naphthalene tetracarboxylic dianhydride (NTDA) and nonsulfonated diamines such as 4,4′‐bis(3‐aminophenoxy) phenyl sulfone (BAPPS). Tough and transparent membranes of SPIs with ion exchange capacity of 1.5–2.9 meq g?1 were prepared. They showed good solubility and high thermal stability up to 300 °C. They showed isotropic membrane swelling in water, which was different from the main‐chain‐type and sulfoalkoxy‐based side‐chain‐type SPIs. The relative humidity (RH) and temperature dependence of proton conductivity were examined. At low RH, the novel SPI membranes showed much higher conductivity than the sulfoalkoxy‐based SPIs. They showed comparable or even higher proton conductivity than Nafion 112 in water at 60 °C (>0.10 S cm?1). The membrane of NTDA‐DASDSPB/BAPPS (1/1)‐s displayed reasonably high proton conductivities of 0.05 and 0.30 S cm?1 at 50 and 100% RH, respectively, at 120 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2862–2872, 2006  相似文献   

13.
Segmented disulfonated poly(arylene ether sulfone)‐b‐polyimide copolymers based on hydrophilic and hydrophobic oligomers were synthesized and evaluated for use as proton exchange membranes (PEMs). Amine terminated sulfonated poly (arylene ether sulfone) hydrophilic oligomers and anhydride terminated naphthalene based polyimide hydrophobic oligomers were synthesized via step growth polymerization including high temperature one‐pot imidization. Synthesis of the multiblock copolymers was achieved by an imidization coupling reaction of hydrophilic and hydrophobic oligomers oligomers in a m‐cresol/NMP mixed solvent system, producing high molecular weight tough and ductile membranes. Proton conductivities and water uptake increased with increasing ion exchange capacities (IECs) of the copolymers as expected. The morphologies of the multiblock copolymers were investigated by tapping mode atomic force microscopy (TM‐AFM) and their measurements revealed that the multiblock copolymers had well‐defined nano‐phase separated morphologies which were clearly a function of block lengths. Hydrolytic stability test at 80 °C water for 1000 h showed that multiblock copolymer membranes retained intrinsic viscosities of about 80% of the original values and maintained flexibility which was much improved over polyimide random copolymers. The synthesis and fundamental properties of the multiblock copolymers are reported here and the systematic fuel cell properties will be provided in a separate article. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4879–4890, 2007  相似文献   

14.
燃料电池用磺化聚酰亚胺质子交换膜材料的制备与性质   总被引:2,自引:0,他引:2  
以联萘二酐、磺化二胺和含咪唑基团的非磺化二胺单体为原料,制备了一系列高相对分子质量的磺化聚酰亚胺,该类聚合物具有优异的溶解性和良好的成膜性.得到的质子交换膜具有优异的水解稳定性.苯并咪唑碱性基团的存在提高了磺化聚酰亚胺质子交换膜膜的溶胀稳定性和热稳定性、降低了膜的甲醇透过率.质子导电率测试结果表明,IEC值为2.55mequiv·g-1的膜室温条件下的质子导电率为0.121 S·cm-1,高于在相同测试条件下Nafion 117膜的质子导电率(0.09 S·cm-1).  相似文献   

15.
Summary: Novel proton conducting ionomers have been prepared by attaching pendant sulfonated aromatic side chains to polysulfone. Lithiated polysulfone was first reacted with 4‐fluorobenzoic acid chloride to introduce 4‐fluorobenzoyl side chains to the polymer main chain. Next, the activated fluoro groups were replaced by 4‐sulfophenoxy or 7‐sulfo‐2‐naphthoxy in a potassium carbonate‐mediated nucleophilic substitution reaction. This reaction proceeded under full conversion and the degree of substitution was easily controlled by the degree of lithiation in the first step. Membranes based on ionomers carrying one sulfophenoxybenzoyl unit per polymer repeat unit reached a proton conductivity exceeding 30 mS · cm−1 at 120 °C under immersed conditions.

Structures of sulfophenoxybenzoyl polysulfone and sulfonaphthoxybenzoyl polysulfone.  相似文献   


16.
Sulfonated polyimide (SPI)/dihydroxynaphthalene (DHN) charge‐transfer (CT) complex hybrid films were investigated as possible alternative for polymer electrolyte membranes in polymer electrolyte fuel cells. SPI/DHN CT complex hybrid films include CT complexes, which might work as electronic conductors, and sulfonic acid units, which could work as proton conductors. Therefore, the origin of the conductivity of SPI/DHN complex hybrid films was evaluated by four‐probe impedance measurements in the through‐plane direction of the films. The obtained conductivity of the CT complex hybrid films increased with the increase of ion exchange capacity of the CT films and the decrease of CT complex concentration in the films. These results indicated that proton transfer dominantly occurred in the CT complex hybrid films. Proton conductivity of the CT complex hybrid films consisting of 2,6‐ or 1,5‐DHN showed the similar values, although the molecular geometries of the CT complex were different. The activation energy values for proton conductivity in the CT films were approximately the same as that of Nafion 212. Water uptake (WU) results were also conducted and suggest that CT complex formation could control the degree of WU of the films and prevent dissolution of SPI. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2991–2997  相似文献   

17.
Six series of novel highly sulfonated polybenzimidazoles (sPBIs) with high molecular weight were prepared by direct polycondensation between 3,3′‐diaminobenzidine and original multisulfonated dinuclear dicarboxylic acids containing bridging ether, sulfone, and hexafluoroisopropylidene moieties. All reactions were carried out in polyphosphoric acid, which acts as both solvent and catalyst. The degree of sulfonation was modulated in the final products by varying the proportion of sulfonated to nonsulfonated dicarboxylic acids used in the synthesis. The high purity of the disulfonated and tetrasulfonated monomers allows wholly sulfonated homopolymers to be obtained. Confirmation of the chemical structure and the degree of sulfonation were derived from 1H nuclear magnetic resonance spectroscopy. Inherent viscosity was estimated as between 0.70 and 5.33 dL g?1 for sPBIs with ion exchange capacity in the range 0.87–4.68 mequiv g?1. Dynamic thermogravimetric analysis in air showed no weight loss below 350 °C (heating rate 5 °C min?1). The nature of the bisphenyl bridge has clear influence on the water uptake and proton conduction properties of the resulting sPBI membranes, with hexafluoroisopropylidene links providing materials of highest conductivity as well as favoring film‐forming characteristics. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
A series of sterically‐encumbered, sulfonated, poly(arylene ether) copolymers were synthesized and their proton conductivity examined. The series was prepared by copolymerizing a novel monomer, 2″,3″,5″,6″‐tetraphenyl‐[1,1′:4',1″:4″,1″':4″',1″″‐quinquephenyl]‐4,4″″‐diol, with 4,4'‐difluorobenzophenone and bisphenol A. Subsequent sulfonation and solution casting provided membranes possessing ion exchange capacities of 1.9 to 2.7 mmol/g and excellent mechanical properties (Young's modulus, 0.2–1.2 GPa; tensile strength, 35–70 MPa; elongation at break, 62–231%). Water uptake ranged from 34 to 98 wt% at 80 °C/100% RH. Proton conductivities ranged between 0.24 to 16 mS/cm at 80 °C/60% RH, and 3 to 167 mS/cm at 80 °C/95% RH. TEM analysis of the polymers, in the dehydrated state, revealed isolated spherical aggregates of ions, which presumably coalesce when hydrated to provide highly conductive pathways. The strategy of using highly‐encumbered polymer frameworks for the design of mechanically‐robust and dimensionally‐stable proton conducting membranes is demonstrated. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2579‐2587  相似文献   

19.
A series of sulfonated homo‐ and random co‐polyimides (co‐SPI) based on 2,4‐diaminobenzenesulfonic acid (2,4‐DABS) and 2,5‐diaminobenzenesulfonic acid (2,5‐DABS) has been synthesized via conventional two‐step polyimidization method. 2,4‐DABS and 2,5‐DABS were used as sulfonated diamine compounds, 4,4′‐oxydianiline (ODA) and 4,4′‐diaminodiphenyl sulfone (DDS) were used as non‐sulfonated diamine compounds. Mixtures of sulfonated and non‐sulfonated diamine compounds were reacted with benzophenonetetracarboxylic dianhydride (BTDA) to obtain co‐SPI membranes. Molar ratios of sulfonated to non‐sulfonated diamine were systematically varied to produce copolymers of controlled compositions. The co‐SPIs were evaluated for thermal oxidative stability, ion exchange capacity (IEC), water uptake, proton conductivity, solubility, and hydrolytic stability. Proton conductivity and hydrolytic stability of the co‐SPIs were compared with the fully aromatic polyimide, homo‐SPIs (BTDA/2,4‐DABS and BTDA/2,5‐DABS). Regarding thermogravimetric analysis (TGA) analysis, it is concluded that desulfonation temperature in the range of 200–350°C suggests high stability of sulfonic acid groups. co‐SPIs with 40 mol% of 2,4‐DABS showed similar or higher proton conductivity than Nafion® 117 in water. Proton conductivity values of the co‐SPIs were mainly a function of IEC and water uptake. Consequently, the optimum concentration of 2,4‐DABS was found to be in the range of 30–40 mol% from the viewpoint of proton conductivity, IEC, and hydrolytic stability. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
New classes of fluorinated polymer–polysilsesquioxane nanocomposites have been designed and synthesized. The synthesis method includes radical polymerization using the functional benzoyl peroxide initiator for the telechelic fluorinated polymers with perfluorosulfonic acids in the side chains and a subsequent in situ sol–gel condensation of the prepared triethoxylsilane‐terminated fluorinated polymers with oxide precursors. The telechelic polymer and nanocomposites have been carefully characterized by 1H and 19F NMR, FTIR, TGA, and TEM. The ion‐exchange capacity (IEC), water uptake, the state of the absorbed water, and transport properties of the composite membranes have been extensively studied as a function of the content and structure of the fillers. Unlike the conventional Nafion/silica composites, the proton conductivity of the prepared membranes increases steadily with the addition of small amounts of the polysilsesquioxane fillers. In particular, the sulfopropylated polysilsesquioxane‐based nanocomposites display proton conductivities greater than Nafion. This is attributed to the presence of pendant sulfonic acids in the fillers, which increases IEC and offers continuous proton transport channels between the fillers and the polymer matrix. The methanol permeability of the prepared membranes has also been examined. Lower methanol permeability and higher electrochemical selectivity than those of Nafion have been demonstrated in the polysilsesquioxane‐based nanocomposites. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号