首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The multiconfigurational spin tensor electron propagator method (MCSTEP) was developed as an implementation of electron propagator/single particle Green's function methods for ionization potentials (IPs) and electron affinities (EAs). MCSTEP was specifically designed for open shell and highly correlated (nondynamically correlated) initial states. For computational efficiency the initial state used in MCSTEP is typically a small complete active space (CAS) multiconfigurational self‐consistent field (MCSCF) state. If in a molecule there are some degenerate orbitals which are not fully or half occupied, usual MCSCF calculations will make these orbitals inequivalent, i.e., the occupied ones will be different from the nonoccupied ones, so that the degeneracy is broken. In this article, we use a state averaged MCSCF method to get equivalent orbitals for the initial state and import the integrals into the subsequent MCSTEP calculations. This gives, in general, more reliable MCSTEP vertical IPs. © 2008 Wiley Periodicals, Inc., 2008  相似文献   

2.
The multiconfigurational spin tensor electron propagator (MCSTEP) method was developed as an implementation of electron propagator/single particle Green's function methods. MCSTEP was specifically designed for open‐shell and highly correlated (nondynamically correlated) initial states. Ionization or electron attachment is always from a state of pure spin symmetry to a state of pure spin symmetry even if the initial state is open shell. MCSTEP can be used as well for molecules with initial states that can be accurately described by a single determinant‐based theory. The initial state that is used in MCSTEP is typically a small complete active space (CAS) multiconfigurational self‐consistent field (MCSCF) state. We previously examined different small CAS choices for MCSTEP initial states and have developed a generally workable scheme. This article further examines some different ways to choose the CAS for MCSTEP. With several logical CAS choices, we have calculated the low‐lying vertical MCSTEP ionization potentials (IPs) of C2, N2, linear H2O, O2, CH2, and NH2, comparing them with large multireference configuration interaction (MRCI) calculations. We conclude that generally a small modification and extension of our previous schemes for choosing the MCSTEP CAS gives IPs that most effectively mimics the results of large scale MRCI IPs in general. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

3.
Summary We applied the multiconfigurational spin tensor electron propagator method (MCSTEP) for determining the lowest few (in energy) vertical ionization potentials (IPs) of HF, H2O, NH3, CH4, N2, CO, HNC, HCN, C2H2, H2CO, and B2H6. We chose these molecules so that we could compare MCSTEP IPs with recently reported extended Koopmans' theorem (EKT) IPs on the same molecules. Using standard Dunning core-valence basis sets with relatively small complete active spaces, MCSTEP results are in very good to excellent agreement with experiment. These MCSTEP IPs are obtained using matrices no larger than 400 × 400. EKT matrices are even smaller; however, to obtain similar but generally slightly worse agreement with experiment, fairly large active spaces are required with EKT.  相似文献   

4.
5.
We describe a procedure which may be used to aid selection of the active space in multiconfigurational self-consistent field (MCSCF) calculations for general chemical systems. Starting from a restricted Hartree-Fock calculation, we define a hierarchy of interacting virtual orbitals for every occupied orbital. The most strongly interacting orbitals are then taken to constitute the active space in a configuration interaction (CI) calculation. The natural orbital occupation numbers obtained from the CI calculation are then used to choose the active space to be used in a subsequent MCSCF calculation. We illustrate our method on a number of systems (Li2, B2, C2, carbonyl oxide and the transition state for oxidation of H2S by dioxirane). In all these cases, ‘intuitive’ active spaces are inadequate, as are active spaces derived from the natural orbitals of unrestricted Hartree-Fock calculations.  相似文献   

6.
7.
Potential energy curves for inner-shell states of nitrogen and carbon dioxide molecules are calculated by inner-shell complete active space self-consistent field (CASSCF) method, which is a protocol, recently proposed, to obtain specifically converged inner-shell states at multiconfigurational level. This is possible since the collapse of the wave function to a low-lying state is avoided by a sequence of constrained optimization in the orbital mixing step. The problem of localization of K-shell states is revisited by calculating their energies at CASSCF level based on both localized and delocalized orbitals. The localized basis presents the best results at this level of calculation. Transition energies are also calculated by perturbation theory, by taking the above mentioned MCSCF function as zeroth order wave function. Values for transition energy are in fairly good agreement with experimental ones. Bond dissociation energies for N(2) are considerably high, which means that these states are strongly bound. Potential curves along ground state normal modes of CO(2) indicate the occurrence of Renner-Teller effect in inner-shell states.  相似文献   

8.
A general strategy to calculate potential curves at multiconfigurational self-consistent field (MCSCF) level for inner-shell states is reported in this paper. Convergence is commonly very tough for inner-shell states, especially at this level of calculation, due to the problem of variational collapse of the inner-shell wave function to the ground or to a low-lying excited state. The present method allows to avoid this drawback by a sequence of constrained optimization in the orbital mixing step. The specific states studied are that resulting from transitions X (1)Σ(+) → (C 1s(-1) π(?)) (1,3)Π of CO. Accurate values are achieved for transition energies and vibrational splittings. A comparison is made with other approach, i.e., inner-shell CI based on a MCSCF wave function optimized for ground or low-lying excited states. This last approach is shown to fail in describing the whole potential curve.  相似文献   

9.
A new multiconfigurational self-consistent field (MCSCF) method based on successive optimizations of Jacobi rotation angles is presented. For given one- and two-particle density matrices and an initial set of corresponding integrals, a technique is developed for the determination of a Jacobi angle for the mixing of two orbitals, such that the exact energy, written as a function of the angle, is fully minimized. Determination of the energy-minimizing orbitals for given density matrices is accomplished by successive optimization and updating of Jacobi angles and integrals. The total MCSCF energy is minimized by alternating between CI and orbital optimization steps. Efficiency is realized by optimizing CI and orbital vectors quasi-simultaneously by not fully optimizing each in each improvement step. On the basis of the Jacobi-rotation based approach, a novel MCSCF procedure is formulated for excited states, which avoids certain shortcomings of traditional excited-state MCSCF methods. Applications to specific systems show the practicability of the developed methods.  相似文献   

10.
We present a complex multiconfigurational self‐consistent field (CMCSCF)‐based approach to investigate electron‐atom scattering resonances. It is made possible by the use of second quantization algebra adapted for biorthogonal spin orbitals, which has been applied to develop a quadratically convergent CMCSCF method. To control the convergence to the correct CMCSCF stationary point, a modified step‐length control algorithm is introduced. Convergence to a tolerance of 1.0 × 10?10 a.u. for the energy gradient is found to be typically within 10 iterations or less. A method involving the first block of the M matrix defined in the multiconfigurational spin tensor electron propagator method (MCSTEP) based on the CMCSCF reference state has been implemented to investigate 2P Be? shape resonances. The position and width of these resonances have been calculated for different complete active space choices. The wide distribution of the position and width of the resonance reported in the literature is explained by the existence of two distinct resonances which are close in energy. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

11.
An SCF scheme for excited states of closed-shell systems based on the direct minimization technique is discussed. The utility of the scheme is tested for several excited states of H2O. The contribution of various tyeps of optimization of orbitals occupied in the excited state is discussed using the example of H2 O and FNO. It was found that relaxation of doubly occupied orbitals always gives a significnat contribution to the lowering of the excited state energy in the SCF process. Unexpectedly, on the other hand, optimization of the excited orbital in many cases gave negligible results.  相似文献   

12.
Electronic characteristics of trHbN hemoglobin whose composition contains the (ONOO) group with the structure close to the structure of 1) peroxynitrite and 2) a nitrate anion in the gas phase are calculated. Electron correlation is considered by the multiconfigurational self-consistent field (MCSCF) method during the optimization of the geometry of the whole structure. Localized molecular orbitals (MOs) are used as starting ones. In the wave function of the MCSCF method two complete active subspaces (CASs) are set. These are the subspace of iron atom 3d orbitals and the subspace describing chemical bonds in peroxynitrite (bonding and antibonding MOs plus the orbital of one lone pair on the O2 moiety. The composition of the system involves two water molecules. The peroxynitrite structure is considered in two different spin states that correspond to the singlet and triplet states of this anion in the gas phase where the vibrational spectrum is characterized by frequencies of about (70-30) cm?1. The protective reaction of the active center of the tubercule bacillus is discussed.  相似文献   

13.
Second-order multiconfigurational self-consistent field (MCSCF ) calculation has been programmed on the basis of CNDO /INDO molecular orbital bases, in which the configuration space employed is restricted within pair-excitations. Test calculations have been carried out for 17 small molecules. All the MCSCF ground states of these molecules have been successfully converged to their respective optimal states by employing a simple weighting scheme. This procedure provides a great savings in computer time. The MCSCF calculation on azetidine required only 27 min on a HITAC M-680H. The MCSCF energies of HF, F2, and BH show improved behaviors up to large atomic distances (~7au).  相似文献   

14.
We report the gas‐phase synthesis of stable 20‐electron carbonyl anion complexes of group 3 transition metals, TM(CO)8 (TM=Sc, Y, La), which are studied by mass‐selected infrared (IR) photodissociation spectroscopy. The experimentally observed species, which are the first octacarbonyl anionic complexes of a TM, are identified by comparison of the measured and calculated IR spectra. Quantum chemical calculations show that the molecules have a cubic (Oh) equilibrium geometry and a singlet (1A1g) electronic ground state. The 20‐electron systems TM(CO)8 are energetically stable toward loss of one CO ligand, yielding the 18‐electron complexes TM(CO)7 in the 1A1 electronic ground state; these exhibit a capped octahedral structure with C3v symmetry. Analysis of the electronic structure of TM(CO)8 reveals that there is one occupied valence molecular orbital with a2u symmetry, which is formed only by ligand orbitals without a contribution from the metal atomic orbitals. The adducts of TM(CO)8 fulfill the 18‐electron rule when only those valence electrons that occupy metal–ligand bonding orbitals are considered.  相似文献   

15.
We report the gas‐phase synthesis of stable 20‐electron carbonyl anion complexes of group 3 transition metals, TM(CO)8? (TM=Sc, Y, La), which are studied by mass‐selected infrared (IR) photodissociation spectroscopy. The experimentally observed species, which are the first octacarbonyl anionic complexes of a TM, are identified by comparison of the measured and calculated IR spectra. Quantum chemical calculations show that the molecules have a cubic (Oh) equilibrium geometry and a singlet (1A1g) electronic ground state. The 20‐electron systems TM(CO)8? are energetically stable toward loss of one CO ligand, yielding the 18‐electron complexes TM(CO)7? in the 1A1 electronic ground state; these exhibit a capped octahedral structure with C3v symmetry. Analysis of the electronic structure of TM(CO)8? reveals that there is one occupied valence molecular orbital with a2u symmetry, which is formed only by ligand orbitals without a contribution from the metal atomic orbitals. The adducts of TM(CO)8? fulfill the 18‐electron rule when only those valence electrons that occupy metal–ligand bonding orbitals are considered.  相似文献   

16.
The full configuration interaction method in the space of fractionally occupied unrestricted natural orbitals (UNO-CAS method) is extended to excited states as well as to strongly correlated and reactive systems with large active spaces. This is accomplished by␣using restricted active space (RAS) wave functions introduced by Olsen et al. [(1988) J Chem Phys 89: 2185] and using the UNOs without the expensive orbital optimization step. In RAS, the space of active orbitals is subdivided into three groups: a group with essentially doubly occupied orbitals (RAS1), the usual CAS space (RAS2), and a space with weakly occupied active orbitals (RAS3). We select these spaces on the basis of the occupation numbers of the UNOs. All possible electron distributions are allowed in the usual CAS space, but the number of vacancies is limited in RAS1 and the number of electrons is limited in RAS3. We discuss an efficient algorithm for generating a RAS wave function. This is based on the Handy-Knowles determinantal expansion with an addressing scheme adopted for the restricted expansion. Results for both ground and excited states of azulene and free base porphyrin are presented. Received: 16 July 1998 / Accepted: 7 August 1998 / Published online: 19 October 1998  相似文献   

17.
This paper clarifies why long-range corrected (LC) density functional theory gives orbital energies quantitatively. First, the highest occupied molecular orbital and the lowest unoccupied molecular orbital energies of typical molecules are compared with the minus vertical ionization potentials (IPs) and electron affinities (EAs), respectively. Consequently, only LC exchange functionals are found to give the orbital energies close to the minus IPs and EAs, while other functionals considerably underestimate them. The reproducibility of orbital energies is hardly affected by the difference in the short-range part of LC functionals. Fractional occupation calculations are then carried out to clarify the reason for the accurate orbital energies of LC functionals. As a result, only LC functionals are found to keep the orbital energies almost constant for fractional occupied orbitals. The direct orbital energy dependence on the fractional occupation is expressed by the exchange self-interaction (SI) energy through the potential derivative of the exchange functional plus the Coulomb SI energy. On the basis of this, the exchange SI energies through the potential derivatives are compared with the minus Coulomb SI energy. Consequently, these are revealed to be cancelled out only by LC functionals except for H, He, and Ne atoms.  相似文献   

18.
The algebraic structure for creation and annihilation operators defined on orthogonal orbitals is generalized to permit easy development of bound‐state techniques involving the use of non‐Hermitian Hamiltonians arising from the use of complex‐scaling or complex‐absorbing potentials in the treatment of electron scattering resonances. These extensions are made possible by an orthogonal transformation of complex biorthogonal orbitals and states as opposed to the customary unitary transformation of real orthogonal orbitals and states and preserve all other formal and numerical simplicities of existing bound‐state methods. The ease of application is demonstrated by deriving the modified equations for implementation of a quadratically convergent multiconfigurational self‐consistent field (MCSCF) method for complex‐scaled Hamiltonians but the generalizations are equally applicable for the extension of other techniques such as single and multireference coupled cluster (CC) and many‐body perturbation theory (MBPT) methods for their use in the treatment of resonances. This extends the domain of applicability of MCSCF, CC, MBPT, and methods based on MCSCF states to an accurate treatment of resonances while still using L2 real basis sets. Modification of all other bound‐state methods and codes should be similarly straightforward. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

19.
20.
The efficacy of several multiconfiguration self-consistent field (MCSCF) methods in the subsequent spin-orbit coupling calculations was studied. Three MCSCF schemes to generate molecular orbitals were analyzed: state-specific, state-averaged, and dynamically weighted MCSCF. With Sn(2)(+) as the representative case, we show that the state-specific MCSCF orbitals lead to discontinuities in potential energy curves when avoided crossings of electronic states occur; this problem can be solved using the state-averaged or dynamically weighted MCSCF orbitals. The latter two schemes are found to give similar results when dynamic electron correlation is considered, which we calculated at the level of multiconfigurational quasidegenerate perturbation theory (MCQDPT). We employed the recently developed Douglas-Kroll spin-orbit adapted model core potential, ZFK3-DK3, and the dynamically weighted MCSCF scheme to calculate the spectroscopic constants of the mono-hydrides and compared them to the results obtained using the older set of potentials, MCP-TZP. We also showed that the MCQDPT tends to underestimate the dissociation energies of the hydrides and discussed to what extent coupled-cluster theory can be used to improve results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号