首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanism of the cycloadditional reaction between singlet germylidene (R1) and formaldehyde (R2) has been investigated with MP2/6‐31G* method, including geometry optimization, and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by CCSD(T)//MP2/6‐31G* method. From the potential energy profile, it can be predicted that the dominant reaction pathway of the cycloadditional reaction between singlet germylidene and formaldehyde is reaction (4) , which consists of three steps: the two reactants (R1, R2) first form an intermediate INT1b through a barrier‐free exothermic reaction of 28.1 kJ/mol; this intermediate reacts further with formaldehyde (R2) to give an intermediate INT4, which is also a barrier‐free exothermic reaction of 37.2 kJ/mol; subsequently, the intermediate INT4 isomerizes to a heteropolycyclic germanic compound P4 via a transition state TS4, for which the barrier is 18.6 kJ/mol. The dominant reaction has an excellent selectivity and differs considerably from its competitive reactions in thermodynamic property and reaction rate. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

2.
The mechanism of the cycloaddition reaction of singlet stannylene and ethylene or formaldehyde has been studied by using density functional theory. The geometrical parameters, harmonic vibrational frequencies and energies of stationary points for potential energy surface are calculated by RB3LYP/3–21G* method. The results show that the two reaction processes are both two steps: (1) stannylene and ethylene or formaldehyde form an energy‐rich intermediate complex respectively, which is an exothermal reaction with no barrier; (2) two intermediate complexes isomerize to the product, respectively, with the barriers of these two reactions being 52.97 and 45.15 kJ/mol at RB3LYP/3–21G* level.  相似文献   

3.
The cycloaddition mechanism of forming a polycyclic compound between singlet dimethylmethylene carbene(R1) and formaldehyde(R2) has been investigated with MP2/6‐31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated with CCSD(T)//MP2/6‐31G* method. From the potential energy profile, it can be predicted that the dominant reaction pathway of the cycloadditional reaction between singlet dimethylmethylene carbene and formaldehyde consists of two steps: (1) the two reactants(R1, R2) firstly form an energy‐enricheded intermediate (INT1a) through a barrier‐free exothermic reaction of ΔE = 11.3 kJ/mol. (2) Intermediate (INT1a) then isomerizes to a three‐membered product (P1) via a transition state (TS1a) with an energy barrier of 20.0 kJ/mol. The dominant reaction has an excellent selectivity and differs considerably from its competitive reactions in reaction rate. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

4.
The cycloaddition mechanism of the reaction between singlet dimethyl germylidene and formaldehyde has been investigated with MP2/6-31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated with CCSD (T)//MP2/6-31G* method. From the potential energy profile, we predict that the cycloaddition reaction between singlet dimethyl germylidene and formaldehyde has two dominant reaction pathways. First dominant reaction pathway consists of three steps: (1) the two reactants (R1, R2) firstly form an intermediate INT1a through a barrier-free exothermic reaction of 43.0 kJ/mol; (2) INT1a then isomerizes to a four-membered ring compound P1 via a transition state TS1a with an energy barrier of 24.5 kJ/mol; (3) P1 further reacts with formaldehyde(R2) to form a germanic heterocyclic compound INT3, which is also a barrier-free exothermic reaction of 52.7 kJ/mol; Second dominant reaction pathway is as following: (1) the two reactants (R1, R2) firstly form a planar four-membered ring intermediate INT1b through a barrier-free exothermic reaction of 50.8 kJ/mol; (2) INT1b then isomerizes to a twist four-membered ring intermediate INT1.1b via a transition state TS1b with an energy barrier of 4.3 kJ/mol; (3) INT1.1b further reacts with formaldehyde(R2) to form an intermediate INT4, which is also a barrier-free exothermic reaction of 46.9 kJ/mol; (4) INT4 isomerizes to a germanic bis-heterocyclic product P4 via a transition state TS4 with an energy barrier of 54.1 kJ/mol.  相似文献   

5.
The mechanism of the cycloaddition reaction between singlet dimethyl‐silylene carbene and formaldehyde has been investigated with MP2/6‐31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by zero‐point energy and CCSD (T)//MP2/6‐31G* method. From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. The main products of first dominant reaction pathway are a planar four‐membered ring product (P4) and its H‐transfer product (P4.2). The main product of second dominant reaction pathway is a silicic bis‐heterocyclic compound (P5). © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

6.
硅烯与甲醛环加成反应的理论研究   总被引:3,自引:0,他引:3  
卢秀慧  王沂轩  刘成卜  邓从豪 《化学学报》1998,56(11):1075-1080
本文用RHF/6-31G^*解析梯度方法研究了单重态硅烯与甲醛环加成反应的机理,用二级微扰方法对各构型的能量进行了相关能校正,并用统计热力学方法和过渡态理论计算了该反应在不同温度下的热力学函数的变化和动力学性质。结果表明,此反应历程由两步组成:1)硅烯与甲醛生成一中间配合物,是一无势垒的放热反应,2)中间配合物异构化为产物,此步势垒经零点能校正后只有51.4kJ·mol^-^1(MP2/6-31G^*//6-31G^*);从热力学和动力学的综合角度考虑,该反应在300~400K温度下进行为宜,如此,反应既有较大的自发趋势和平衡常数,又具有较快的反应速率。  相似文献   

7.
Mechanisms of the cycloaddition reaction between singlet difluoromethylene carbene and acetone have been investigated with the second‐order Møller–Plesset (MP2)/6‐31G* method, including geometry optimization and vibrational analysis. Energies for the involved stationary points on the potential energy surface (PES) are corrected by zero‐point energy (ZPE) and CCSD(T)/6‐31G* single‐point calculations. From the PES obtained with the CCSD(T)//MP2/6‐31G* method for the cycloaddition reaction between singlet difluoromethylene carbene and acetone, it can be predicted that path B of reactions 2 and 3 should be two competitive leading channels of the cycloaddition reaction between difluoromethylene carbene and acetone. The former consists of two steps: (i) the two reactants first form a four‐membered ring intermediate, INT2, which is a barrier‐free exothermic reaction of 97.8 kJ/mol; (ii) the intermediate INT2 isomerizes to a four‐membered product P2b via a transition state TS2b with an energy barrier of 24.9 kJ/mol, which results from the methyl group transfer. The latter proceeds in three steps: (i) the two reactants first form an intermediate, INT1c, through a barrier‐free exothermic reaction of 199.4 kJ/mol; (ii) the intermediate INT1c further reacts with acetone to form a polycyclic intermediate, INT3, which is also a barrier‐free exothermic reaction of 27.4 kJ/mol; and (iii) INT3 isomerizes to a polycyclic product P3 via a transition state TS3 with an energy barrier of 25.8 kJ/mol. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

8.
The mechanism of the sulfur extraction reaction between singlet germylene carbene and its derivatives [X2Ge?C: (X = H, F, Cl, CH3)] and thiirane has been investigated with density functional theory, including geometry optimization and vibrational analyses for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by B3LYP/6‐311G(d,p) method. From the potential energy profile, it can be predicted that the reaction pathway of this kind consists two steps: (1) the two reactants firstly form an intermediate (INT) through a barrier‐free exothermic reaction; (2) the INT then isomerizes to a product via a transition state (TS). This kind reaction has similar mechanism, when the germylene carbene and its derivatives [X2Ge?C: (X = H, F, Cl, CH3)] and thiirane get close to each other, the shift of 3p lone electron pair of S in thiirane to the 2p unoccupied orbital of C in X2Ge = C: gives a pp donor–acceptor bond, leading to the formation of INT. As the pp donor–acceptor bond continues to strengthen (that is the C? S bond continues to shorten), the INT generates product (P + C2H4) via TS. It is the substituent electronegativity that mainly affects the extraction reactions. When the substituent electronegativity is greater, the energy barrier is lower, and the reaction rate is greater. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

9.
The mechanism of the oxide extraction reaction between singlet silylene carbene and its derivatives [X2Si = C: (X = H, F, Cl, CH3)] and ethylene oxide has been investigated with density functional theory, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by B3LYP/6‐311G(d,p) method. From the potential energy profile, it can be predicted that the reaction pathway of this kind consists two steps, the first step is the two reactants firstly form an intermediate (INT) through a barrier‐free exothermic reaction; the second step is the INT then generates a product via a transition state (TS). This kind reaction has similar mechanism, when the silylene carbene and its derivatives [X2Si = C: (X = H, F, Cl, CH3)] and ethylene oxide close to each other, the shift of 2p lone electron pair of O in ethylene oxide to the 2p unoccupied orbital of C in X2Si = C: gives a p → p donor–acceptor bond, thereby leading to the formation of INT. As the p → p donor–acceptor bond continues to strengthen (that is, the C? O bond continues to shorten), the INT generates product (P + C2H4) via TS. It is the substituent electronegativity, which mainly affects the extraction reactions. When the substituent electronegativity is greater, the energy barrier is lower, and the reaction rate is greater. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

10.
The mechanism of the cycloaddition reaction between singlet dichloro‐germylene carbene and aldehyde has been investigated with MP2/6‐31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by zero‐point energy and CCSD (T)//MP2/6‐31G* method. From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. The channel (A) consists of four steps: (1) the two reactants (R1, R2) first form an intermediate INT2 through a barrier‐free exothermic reaction of 142.4 kJ/mol; (2) INT2 then isomerizes to a four‐membered ring compound P2 via a transition state TS2 with energy barrier of 8.4 kJ/mol; (3) P2 further reacts with aldehyde (R2) to form an intermediate INT3, which is also a barrier‐free exothermic reaction of 9.2 kJ/mol; (4) INT3 isomerizes to a germanic bis‐heterocyclic product P3 via a transition state TS3 with energy barrier of 4.5 kJ/mol. The process of channel (B) is as follows: (1) the two reactants (R1, R2) first form an intermediate INT4 through a barrier‐free exothermic reaction of 251.5 kJ/mol; (2) INT4 further reacts with aldehyde (R2) to form an intermediate INT5, which is also a barrier‐free exothermic reaction of 173.5 kJ/mol; (3) INT5 then isomerizes to a germanic bis‐heterocyclic product P5 via a transition state TS5 with an energy barrier of 69.4 kJ/mol. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

11.
用二阶微扰理论研究了单重态亚烷基卡宾与甲醛发生的三种环加成反应的机理 ,采用MP2/6-31G~*方法计算了势能面上各驻点的构型参数、振动频率和能量。根 据能量数据可以预言环加成反应(1)的a途径将是单重态亚烷基卡宾与甲醛环加成 反应的主要反应通道,该反应由两步组成:(I)亚烷基卡宾与甲醛生成了一富能 中间体(INT1a),是一无势垒的放热反应,(II)中间体异构化为产物亚烷基环 乙烷,其势垒为24.1 kJ·mol~(-1)(MP2/6-31G~*)。  相似文献   

12.
The mechanism of the cycloaddition reaction of forming a silapolycyclic compound between singlet methylenesilylene and acetone has been investigated with MP2/6‐31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by CCSD(T)//MP2/6‐31G* method. From the potential energy profile, we predict that the cycloaddition reaction of forming a silapolycyclic compound between singlet methylenesilylene and acetone has two competitive dominant reaction pathways. First dominant reaction pathway consists of four steps: (I) the two reactants (R1, R2) first form an intermediate (INT1) through a barrier‐free exothermic reaction of 46.2 kJ/mol; (II) intermediate (INT1) then isomerizes to a planar four‐membered ring product (P3) via transition state (TS3) with an energy barrier of 47.1 kJ/mol; (III) planar four‐membered ring product (P3) further reacts with acetone (R2) to form an intermediate (INT4), which is also a barrier‐free exothermic reaction of 40.0 kJ/mol; (IV) intermediate (INT4) isomerizes to a silapolycyclic compound (P4) via transition state (TS4) with an energy barrier of 57.0 kJ/mol. Second dominant reaction pathway consists of three steps: (I) the two reactants (R1, R2) first form a four‐membered ring intermediate (INT2) through a barrier‐free exothermic reaction of 0.5 kJ/mol; (II) INT2 further reacts with acetone (R2) to form an intermediate (INT5), which is also a barrier‐free exothermic reaction of 45.4 kJ/mol; (III) intermediate (INT5) isomerizes to a silapolycyclic compound (P5) via transition state (TS5) with an energy barrier of 49.3 kJ/mol. P4 and P5 are isomeric compounds. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

13.
锗烯与乙烯环加成反应的理论研究   总被引:8,自引:0,他引:8  
卢秀慧  王沂轩  刘成卜 《化学学报》1999,57(12):1343-1347
用RHF/6-31G^*解析梯度方法研究了单重态锗烯与乙烯环加成反应的机理,用二级微扰方法对各构型的能量进行了相关能校正,并用统计热力学方法和过渡态理论计算了该反应在不同温度下的热力学函数的变化和动力学性质。结果表明,此反应历程由两步组成:1)锗烯与乙烯生成了一中间配合物,是一无势垒的放热反应,2)中间配合物异构化为产物锗杂环丙烷,此步势垒经零点能校正后为26.9kJ.mol^-^1(MP2/6-31G^*//6-31G^*);从热力学和动力学的综合角度考虑,该反应在200-300K温度下进行为宜,如此,反应既有较大的自发趋势和平衡常数,又具有较快的反应速率。  相似文献   

14.
王岩  方德彩  傅孝愿 《化学学报》1999,57(8):887-893
采用从头算HF/6-31G^*和密度泛函B3LYP/6-31++G^*^*方法研究了硫代双烯酮与硫甲醛两种可能的环加成反应的机理,并对反应各驻点进行了电子密度拓扑分析研究.结果表明,这两个生成不同四元杂环产物的平行反应均为有一两性离子中间体的分步反应.两个反应均较易进行,但反应(1)更容易一些,结果与实验一致.  相似文献   

15.
卢秀慧  徐曰华  于海彬  林璜 《中国化学》2005,24(10):1339-1342
The mechanism of a cycloaddition reaction between singlet dichloromethylene germylene and ethylene has been investigated with B3LYP/6-31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. Energies for the involved conformations were calculated by CCSD(T)//B3LYP/6-31G* method. On the basis of the surface energy profile obtained with CCSD(T)// B3LYP/6-31G* method for the cycloaddition reaction between singlet dichloromethylene germylene and ethylene, it can be predicted that the dominant reaction pathway is that an intermediate INT1 is firstly formed between the two reactants through a barrier-free exothermic reaction of 61.7 kJ/mol, and the intermediate INT1 then isomerizes to an active four-membered ring product P2.1 via a transition state TS2, an intermediate INT2 and a transition state TS2.1, in which energy barriers are 57.7 and 42.2 kJ/mol, respectively.  相似文献   

16.
采用密度泛函理论(DFT)方法在B3LYP/6-311G**水平研究了2-硅萘与甲醛和二苯甲酮的[2+2]和[4+2]杂环加成反应的微观机理、势能剖面,考察取代基和苯溶剂对反应势能剖面的影响.计算结果表明,所研究反应均以协同但非同步的方式进行.羰基C原子上的苯取代基不利于反应的进行,而2-硅萘分子中Si原子上的C(CH3)3,CCl3及NH2取代基均有利于反应的进行.苯溶剂对所研究反应的势能剖面影响不大.[2+2]反应比相应的[4+2]反应容易进行,此结果与实验一致.  相似文献   

17.
The mechanism of the cycloaddition reaction of forming a silapolycyclic compound between singlet silylidene and formaldehyde has been investigated with MP2/6-31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by CCSD(T)//MP2/6-31G* method. From the potential energy profile, it can be predicted that the cycloaddition reaction process of forming the silapolycyclic compound (P2) for this reaction consists of four steps: (I) the two reactants first form a semi-cyclic intermediate INT1a through a barrier-free exothermic reaction of 32.5 kJ mol−1; (II) this intermediate then isomerizes to an active four-membered ring intermediate INT1 via a transition state TS1a with an energy barrier of 30.8 kJ mol−1; (III) INT1 further reacts with formaldehyde to form an intermediate INT2, which is also a barrier-free exothermic reaction of 30.1 kJ mol−1; (IV) INT2 isomerizes to a silapolycyclic compound P2 via a transition state TS2 with a barrier of 50.6 kJ mol−1. Comparing this reaction path with other competitive reaction paths, we can see that this cycloaddition reaction has an excellent selectivity.  相似文献   

18.
亚烷基卡宾与丙烯环加成反应机理的理论研究   总被引:2,自引:0,他引:2  
卢秀慧  武卫荣 《化学学报》2003,61(11):1707-1713
用二阶微扰理论研究了单重态亚烷基卡宾与丙烯环加成反应的机理,采用 MP2/6-31G~*方法计算了势能面上各驻点的构型参数、振动频率和能量。根据所得 势能面上的能量数据可以预言,反应(1)的a途径和反应(2)的b途径将是单重态 亚烷基卡宾与丙烯环加成反应的两条相互竞争的主反应通道,两反应途径均由两步 组成,(I)两反应物分别生成了富能中间体INT1a和INT2b,它们均是无势垒的放热 反应,放出的能量分别为60.28和26.33kJ·mol~(-1).(II)中间体INT1a和INT2b分 别通过过渡态TS1a和TS2b异构化为三元环产物P1和四元环产物P2,其势垒分别为 16.43和12.73kJ·mol~(-1)。  相似文献   

19.
The complex doublet potential energy surface for the reaction of 1CHF with NO2, including 14 minimum isomers and 30 transition states, is explored theoretically at the B3LYP/6-311G(d,p) and CCSD(T)/6-311G(d,p) (single-point) levels of theory. The initial association between 1CHF and NO2 is found to be the carbon-to-middle-nitrogen attack forming an energy-rich adduct a (HFCNO2) with no barrier, followed by concerted O-shift and C--N bond rupture leading to product P2 (NO + HFCO), which is the most abundant. In addition, a can take a 1,3-H-shift to isomer b (FCN(O)OH) followed by the dissociation to form the second feasible product P4 (OH + FCNO). The least favorable pathway is that b undergoes a concerted OH-shift to form d (HO(F)CNO), which will dissociate to product P5 (HF+OCNO) via side HF-elimination. The secondary dissociation of P5 may form product P7 (HF+NO+CO) easily. Furthermore, the 1CHF attack at the end-O of NO2 is a barrier-consumed process, and thus may only be of significance at high temperatures. The comparison with the analogous reactions 1CHCl + NO2 is discussed. The present study may be helpful for probing the mechanism of the title reaction and understanding the halogenated carbine chemistry.  相似文献   

20.
亚甲基硅烯与乙烯环加成反应机理的理论研究   总被引:2,自引:0,他引:2  
The mechanism of a cycloaddition reaction between singlet methylidenesilene and ethylene has been investigated with MP2/6-31G^* and B3LYP/6-31G^* methods, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. Energies of the involved conformers were calculated by CCSD(T)//MP2/6-31G* and CCSD(T)//B3LYP/6-31 G* methods, respectively. The results show that the dominant reaction pathway of the cycloaddition reaction is that a complex intermediate is firstly formed between the two reactants through a barrier-free exothermic reaction of 13.3 kJ/mol, and the complex is then isomefized to a four-membered ring product P2,1 via a transition state TS2.1 with a barrier of 32.0 kJ/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号