首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interface of fibrous composites is a key factor to the whole properties of the composites. In this study, the effects of air dielectric barrier discharge (DBD) plasma discharge power density on surface properties of poly(p‐phenylene benzobisoxazole) (PBO) fiber and the interfacial adhesion of PBO fiber reinforced poly(phthalazinone ether sulfone ketone) (PPESK) composite were investigated by several characterization methods, including XPS, SEM, signal fiber tensile strength, interlaminar shear strength, and water absorption. After the air DBD plasma treatment at a power density of 41.4 W/cm3, XPS analysis showed that some polar functional groups were introduced on the PBO fiber surface, especially the emergence of a new oxygen‐containing group (?O–C = O group). SEM observations revealed that the air DBD plasma treatment had a great influence on surface morphologies of the PBO fiber, while the signal fiber tensile strength results showed only a small decline of 5.9% for the plasma‐treated fiber. Meanwhile, interlaminar shear strength value of PBO/PPESK composite was increased to 44.71 MPa by 34.5% and water absorption of the composite decreased from 0.46% for the untreated specimen to 0.27%. The results showed that the air DBD plasma treatment can effectively improve the properties of the PBO fiber surface and the PBO/PPESK composite interface. Results obtained from the above analyses also showed that both the fiber surface and the composite interface performance would be reduced when an undue plasma discharge power density was applied. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.

Air and nitrogen glow discharge were used to replace chromic acid pretreatment to deposit copper film on carbon fiber surfaces from an CuSO4‐HCHO electroless system. A greater copper uptake and a more uniformly coated copper film were obtained for plasma‐treated carbon fibers. The adhesion between the copper film and the carbon fibers was also improved. An orthogonal table L9(34) was used to study the effects of discharge pressure, discharge power, time and gas type on the copper uptake. Scanning electron microscopy (SEM), reflection absorption infrared spectroscopy (RAIR) and X‐ray photoelectron spectroscopy (XPS) at different depths were applied to characterize the physical and chemical changes of the surface of the carbon fibers. The results showed that after plasma treatment, the carbon fiber surface became rough and several types of polar oxygen groups, such as carboxylic acid COOH, esters COOC, quinones Ph?O, etc., were introduced into the carbon fiber surface. A mechanism of plasma treatment effects on copper electroless deposition on the carbon fiber surface is also suggested.  相似文献   

3.
The surface of poly(p-phenylene terephthalamide) (PPTA) films was modified by oxygen plasma, and the modified film surface was analyzed by an advancing contact meter and X-ray photoelectron spectroscopy (XPS). The advancing contact measurement showed that the oxygen plasma treatment made the surface of the PPTA film hydrophilic. The XPS analyses also showed the increase in the O/C and N/C atom ratio, especially the O/C atom ratio, at the PPTA film surface by the oxygen plasma treatment. A main oxygen functionality formed by the oxygen plasma treatment is a carboxylic acid group, and a main nitrogen functionality formed is a protonated amino group. The formation of the oxygen and nitrogen functionalities formed by the oxygen plasma treatment is not restricted to the surface of the PPTA film, but penetrates at least 35 Å deep from the film surface. The formation of these carboxylic acid and protonated amino groups is a result of the bond scission of the amide linkages in the PPTA film. Interactions of photons in the oxygen plasma rather than interactions of electrons and activated oxygen atoms contribute greatly to the bond scission. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
利用射频感性耦合冷等离子体(ICP)处理技术改性连续纤维表面,分别采用X射线光电子能谱(XPS)、原子力显微镜(AFM)及动态接触角分析(DCA)系统研究了等离子体处理时间、放电气压、放电功率等工艺参数对连续碳纤维、芳纶纤维和对亚苯基苯并二噁唑(PBO)纤维的表面化学成分、表面形貌、表面粗糙度及表面自由能的影响.研究结...  相似文献   

5.
Aging behavior of poly(p‐phenylene benzobisoxazole) (PBO) fibers and PBO‐fiber‐reinforced poly(phthalazinone ether sulfone ketone) (PPESK) composites after oxygen plasma treatment was investigated. Surface chemical composition, surface roughness and surface morphologies of oxygen‐plasma‐treated PBO fibers before and after aging in air for 1, 3, 5 and 10 days were analyzed by XPS and atomic force microscopy (AFM). The effects of aging on the material were examined by interlaminar shear strength (ILSS) and water absorption measurements. The results indicate that the major aging behavior of the fibers and the composite appeared in the first few days after oxygen plasma treatment, whereas minor aging effects were observed with prolonged aging. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Material surface properties of polymers, plastics, ceramics and textiles can be modified by atmospheric or low‐pressure glow discharge plasma. The aim of the present work is to study the surface modification of biaxially oriented polypropylene (BOPP) film in order to improve its hydrophilic and wetting properties. In this article we used low‐pressure, low‐temperature oxygen plasma for the surface treatment of BOPP. Scanning electron microscopy indicates that plasma treatment causes mainly physical changes by creating microcraters and roughness on the surface and increasing surface friction. Attenuated total reflectance infrared spectra show oxygen‐containing groups such as ? OH at 3513 cm?1 and C?O at 1695 cm?1. Microscopic investigations of water droplets on BOPP (treated, untreated) show that the interfacial adhesion of treated surfaces is increased. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Understanding the effect of reactive oxygen species (ROS), such as singlet oxygen molecule and atomic oxygen, on polyimide (PI) film properties, such as wettability, morphology, and chemical bonding state, is essential for further development of PI‐based surfaces. We investigated the effect of different ROS generated during ultraviolet (UV) and plasma treatment in oxygen gas on surface modification of Kapton PI. Different surface modification techniques, UV and plasma treatment, are known to generate different ROS. In this work, we demonstrate the effect of different ROS on PI surface modification. From the diagnostics of ROS by means of electron spin resonance and optical emission spectroscopy, we confirmed that during UV treatment, excited singlet oxygen molecules are the main ROS, while plasma treatment mainly generated atomic oxygen. The wettability of PI surface treated by UV and plasma resulted in hydrophilic PI surfaces. XPS results show that the wettability of PI samples is mainly determined by their surface O/C ratio. However, chemical bonding states were different: while UV treatment tended to generate C=O bonds, while plasma treatment tended to generate both C―O and C=O bonds. Singlet oxygen molecules are concluded to be the main oxidant during UV treatment, and their main reaction with PI was concluded to be of the addition type, leading to an increase of C=O groups on the surface of PI film. Meanwhile, atomic oxygen species were the main oxidant during plasma treatment, reacting with the PI surface through both etching and addition reaction, resulting in a wider variety of bonds, including both C―O and C=O groups.  相似文献   

8.
Interface is an important microstructure for advanced polymer‐matrix composite. The composite interface is the bridge and the link for stress transferring between the fiber and the matrix resin. In this work, oxygen plasma treatment was used for modification of aramid fiber surface. The effects of plasma treatment power on interlaminar shear strength of composite were evaluated by short‐beam shear test. The morphologies of both the aramid fiber surface and its composite interface fracture were observed by SEM. The chemical structure and surface chemical composition of the plasma‐treated and separated fibers were analyzed by Fourier transform infrared (FTIR) and XPS, respectively. The results showed that the interlaminar shear strength of composite was enhanced by 33% with plasma treatment power of 200 W. The FTIR and XPS results indicated that the active functional groups were introduced onto the aramid fiber surface by plasma treatment forming chemical bonds with the poly(phthalazinone ether sulfone ketone) resin. The SEM results proved that the aramid fiber surface was roughened by plasma treatment enhancing the mechanical bond with the poly(phthalazinone ether sulfone ketone) resin. The composite rupture occurred from the composite interface to the fiber or the matrix resin. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
Interfacial adhesion between the fiber and the matrix in a composite is a primary factor for stress transfer from the matrix to the fiber. In this study, oxygen plasma treatment method was applied to modify the fiber surface for improving interfacial adhesion of aramid fiber‐reinforced poly(phthalazinone ether sulfone ketone) (PPESK) composite. Composite interfacial adhesion properties were determined by interlaminar shear strength (ILSS) using a short‐beam bending test. The composite interfacial adhesion mechanism was discussed by SEM. The changes of chemical composition and wettability for plasma‐treated fiber surfaces stored in air as long as 10 days were investigated by XPS and dynamic contact angle analysis (DCAA), respectively. Results indicated that oxygen plasma treatment was an effective method for improving interfacial adhesion; plasma‐treated fiber surface suffered aging effects during storage in air. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
In this study, helium/oxygen/nitrogen (He/O2/N2)‐plasma was used to etch/modify the surface of ultra‐high‐molecular‐weight polyethylene (UHMWPE) fiber. After coated with polyurethane (PU), the plasma treated UHMWPE fabrics were laminated. It was found that the values of peeling strength between the laminated UHMWPE fabrics treated with He/O2/N2‐plasma were significantly higher (3–4 times) than that between pristine fabrics. The hydrophilic property and the value of the surface roughness of the UHMWPE fibers increased significantly after treated with He/O2/N2‐plasma. The mechanism of the oxidation/degradation of the polymers on the surface of the UHMWPE fiber during He/O2/N2‐plasma treatment was suggested. In addition, it was found that the higher content of functional groups (carbonyl, aldehyde, and carboxylic acid) on fiber surface and the higher value of surface roughness of the UHMWPE fiber treated with He/O2/N2‐plasma could significantly improve the adhesion‐strength of the laminated UHMWPE fabric. Especially, the micro‐aperture on the surface of UHMWPE fiber caused by the strenuous etching of He/O2/N2‐plasma treatment was also an important factor on improving the adhesion‐strength between the laminated UHMWPE fabrics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The results of measurements of the rates of mass loss, formation of gaseous products, and oxygen consumption during the surface treatment of polyethylene, polypropylene, poly(ethylene terephthalate), and polyimide films in a low-pressure oxygen plasma are reported. It was shown that CO2 and H2O were produced in the same process involving O(3 P) atoms for all polymers, and the kinetic characteristics of the process were determined. The specific features of the plasma-enhanced oxidative degradation associated with the chemical composition of repeating units of these materials are discussed.  相似文献   

12.
Ten samples of crystalline aluminum nitride (AlN) film were deposited on sapphire and silicon substrates by a plasma source molecular beam method. The samples were analyzed using X‐ray photoelectron spectroscopy (XPS) depth profiling and high‐resolution X‐ray diffraction. Oxygen levels were observed to decrease exponentially from the surface into the bulk film. Aluminum, nitrogen and oxygen peaks were fitted with subpeaks in a consistent manner and the subpeaks were assigned to chemical states. AlN subpeaks were observed at 73.5 eV for Al2p and 396.4 eV for N1s. An N1s subpeak at 395.0 eV was assigned to N? N defects. No direct N? O bonds are assigned; rather it is proposed that an N? Al? O bond sequence is the source of higher binding energy N1s subpeaks. The observations in this study support a model in which oxygen is bound only to aluminum in the form of Al? O octahedral complexes dispersed or clustered throughout the main AlN matrix or as Al? O bonds on the crystal grain boundaries. The data also suggest that the AlN lattice parameters are related to oxygen content, since the c‐axis is observed to increase with increasing oxygen content. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
In the present work, scanning tunneling microscopy (STM) was employed to study the surface modification of ultrahigh modulus carbon fibers at the atomic level by oxygen plasma. As detected by STM, the distinctive feature of the fresh, untreated surface was the general presence of atomic-scale arrangements in different degrees of order (from atomic-sized spots without a clearly ordered disposition to triangular patterns identical to those typical of perfect graphite). Following fiber exposure to the plasma, the STM images showed evidence of the abstraction of carbon atoms from random locations on the fiber surface, giving rise to the development of defects (i.e., structural disorder), which in turn were the places where oxygen could be introduced during and after the plasma etching. It was observed that the most effective treatments in terms of extent of surface structural modification (disordering) and uniform introduction of oxygen were those carried out for just a few ( approximately 3) minutes. Considerably shorter exposures failed to provide a homogeneous modification and many locations on the fiber surface remained unaltered, retaining their original atomic-scale order, whereas longer treatments did not bring about further structural changes to the surface and only led to fiber consumption. These results are consistent with previous X-ray photoelectron spectroscopy measurements on these fibers and provide an atomic-level understanding of the saturation effect observed in the surface oxygen concentration of this and other types of carbon fibers with plasma oxidation. Such understanding may also prove helpful for the accurate control and optimization of fiber-matrix interaction in composite materials.  相似文献   

14.
A photoelectrochemical (PEC) cell can split water into hydrogen and oxygen with the assistance of solar illumination. However, its application is still limited by excessive bulk carrier recombination and sluggish surface oxygen evolution reaction (OER) kinetics. Taking SnS2 as an example, a promising layered optoelectronic semiconductor, Ar plasma treatment strategy was used to introduce a SnS/SnS2 P?N heterojunction and O?S bond near the surface of a SnS2 nanosheet array, simultaneously increasing the separation efficiency of photogenerated electron–hole pairs in the bulk and lowering the OER overpotential at the surface. The onset potential of the plasma‐treated SnS2 nanosheet array shifts negatively to 0.16 V, and the photocurrent density at 1.23 V vs. RHE boosts to 2.15 mA cm?2, which is 7 times that of pristine SnS2. This work demonstrates a facile plasma treatment strategy to modulate the energy band structure and surface chemical states for improved PEC performance.  相似文献   

15.
Plasma chemically modified carbon nanofibers were characterized by X-ray photoelectron spectroscopy with regard to the content of carbon, oxygen, and nitrogen and the contribution of carboxylic groups or ester, carbonyl and hydroxylic groups or ether on the surface. Unfortunately, X-ray photoelectron spectroscopy only provides an average value of the first 10 to 15 molecular layers. For comparison, depth profiles were measured and wet chemical methods were applied to estimate the thickness of the functionalized layer and the distribution of oxygen-containing functional groups within the near-surface layers. The results indicate that the fiber surface is covered by a monomolecular oxygen-containing layer and that plasma treatment allows a complete oxygen functionalization of the uppermost surface layer. The best conditions for plasma treatment found within the set of parameters applied to generate complete functionalization are: plasma gas O(2)/Ar ratio 1:1, gas pressure 1-1.5 hPa, plasma power 80 W, treatment time >or= 5 min. Additionally, three quick and easy methods are presented to estimate the efficiency of plasma treatment with regard to surface functionalization: pyrolysis, contact angle measurements, and light permeability measurements of aqueous carbon nanofiber suspensions.  相似文献   

16.
Yasuda等在用XPS研究离子体处理后的PTFE表面结构时,得到一个包络的C_(1s)峰。本文对此进行探讨。 PTFE膜先在蒸馏水中浸泡1小时,再用热异丙醇洗涤5分钟,然后用去离子水清洗三  相似文献   

17.
A porous perovskite BaCoxFeyZr0.9?x?yPd0.1O3?δ (BCFZ‐Pd) coating was deposited onto the outer surface of a BaCoxFeyZr1?x?yO3?δ (BCFZ) perovskite hollow‐fiber membrane. The surface morphology of the modified BCFZ fiber was characterized by scanning electron microscopy (SEM), indicating the formation of a BCFZ‐Pd porous layer on the outer surface of a dense BCFZ hollow‐fiber membrane. The oxygen permeation flux of the BCFZ membrane with a BCFZ‐Pd porous layer increased 3.5 times more than that of the blank BCFZ membrane when feeding reactive CH4 onto the permeation side of the membrane. The blank BCFZ membrane and surface‐modified BCFZ membrane were used as reactors to shift the equilibrium of thermal water dissociation for hydrogen production because they allow the selective removal of the produced oxygen from the water dissociation system. It was found that the hydrogen production rate increased from 0.7 to 2.1 mL H2 min?1 cm?2 at 950 °C after depositing a BCFZ‐Pd porous layer onto the BCFZ membrane.  相似文献   

18.
The introduction of antibacterial property, conductivity, wettability and antithrombogenicity into polyolefin‐based membranes has evoked much attention, which can be achieved by coating hydrophilic polymers. Therefore, it is necessary to modify the roughness and hydrophilicity of polyolefin‐based membranes to enhance the coating ability. In this paper, three kinds of plasma methods, including inductively coupled (ICP) plasma, radio frequency low pressure (RFP) plasma and atmospheric dielectric barrier discharge (DBD) plasma, were used to modify the surface of the polyethylene (PE), polypropylene (PP) and polyester‐polypropylene (PET–PP) membranes. The surface roughness of the plasma‐modified PE, PP and PET–PP films was investigated by scanning electron microscopy (SEM) and atomic force microscope (AFM). The polar functional groups of films were observed by energy dispersive spectrometer (EDX) and X‐ray photoelectron spectroscopy (XPS). Besides, the hydrophilicity of the plasma‐modified PE, PP and PET–PP films was evaluated by water contact angle measurement. It was found that the surface roughness and hydrophilicity of plasma‐modified PE, PP and PET–PP films increased with the generation of oxygen‐containing functional groups (i.e. C―O, and C?O). The PET–PP membranes were treated by RFP plasma at different processing powers and times. These results indicated that plasma is an effective way to modify films, and the treatment time and power of plasma had a certain accumulation effect on the membranes' hydrophilicity. As for the roughness and hydrophilicity, the DBD plasma modifies the PE film, which is the optimum way to get the ideal roughness and hydrophilicity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
郑春满  李效东  余煜玺  赵大方  曹峰 《化学学报》2006,64(15):1581-1586
采用热重-差热分析、元素分析、扫描电子显微镜、凝胶渗透色谱、红外光谱和核磁共振等手段, 研究了聚铝碳硅烷(PACS)纤维预氧化过程中组成、结构演变的规律和反应机理. 结果表明, 空气中PACS纤维从210 ℃左右开始与氧发生放热反应; 随着预氧化温度的升高, 纤维的氧含量逐渐增加, 凝胶含量在氧增重为6~8 wt%时急剧增加, 纤维表面出现细小的微裂纹. 预氧化初期, 主要是Si—H键与氧的反应, 生成Si—O—Si键, 纤维的数均分子量急剧增加, 形成交联结构; 预氧化中期, Si—H键继续反应, Si—O—Si结构明显增多, 同时Si—CH3和Si—H与氧反应, 生成少量的Si—O—C结构; 预氧化后期, 纤维完全交联, 纤维中存在SiC4, SiC3H, Si—O—Si和少量的Si—O—C结构.  相似文献   

20.
The adsorption of 1,1‐diamino‐2,2‐dinitroethylene (FOX‐7) molecule on the Al(111) surface was investigated by the generalized gradient approximation (GGA) of density functional theory (DFT). The calculations employ a supercell (4×4×2) slab model and three‐dimensional periodic boundary conditions. The strong attractive forces between oxygen and aluminum atoms induce the N? O bond breaking of the FOX‐7. Subsequently, the dissociated oxygen atoms and radical fragment of FOX‐7 oxidize the Al surface. The largest adsorption energy is ?940.5 kJ/mol. Most of charge transfer is 3.31e from the Al surface to the fragment of FOX‐7 molecule. We also investigated the adsorption and decomposition mechanism of FOX‐7 molecule on the Al(111) surface. The activation energy for the dissociation steps of P2 con?guration is as large as 428.8 kJ/mol, while activation energies of other con?gurations are much smaller, in range of 2.4 to 147.7 kJ/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号