首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of N‐(2‐benzimidazolyquinolin‐8‐yl)benzamidate half‐titanocene chlorides, Cp′TiLCl ( C1 – C8 : Cp′ = C5H5, MeC5H4, or C5Me5; L = N‐(benzimidazolyquinolin‐8‐yl)benzamides)), was synthesized by the KCl elimination reaction of half‐titanocene trichlorides with the correspondent potassium N‐(2‐benzimidazolyquinolin‐8‐yl)benzamide. These half‐titanocene complexes were fully characterized by elemental and NMR analyses, and the molecular structures of complexes C2 and C8 were determined by the single‐crystal X‐ray diffraction. The high stability of the pentamethylcyclopentadienyl complex ( C8 ) was evident by no decomposing nature of its solution in air for one week. The oxo‐bridged dimeric complex ( C9 ) was isolated from the solution of the corresponding cyclopentadienyl complex ( C3 ) solution in air. Complexes C1 – C8 exhibited good to high catalytic activities toward ethylene polymerization and ethylene/α‐olefin copolymerization in the presence of methylaluminoxane (MAO) cocatalyst. In the typical catalytic system of C1/ MAO, the polymerization productivities were enhanced with either elevating reaction temperature or increasing the ratio of MAO to titanium precursor. In general, it was observed that higher the catalytic activity of the catalytic system lower the molecular weight of polyethylene. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3154–3169, 2009  相似文献   

2.
Reaction of Ti(OCH2CH2OR)4 (R?CH3 and C2H5) with 8‐hydroxyquinoline in benzene at room temperature resulted in the formation of Ti(C9H6NO)2(OCH2CH2OR)2, characterized by IR, 1H‐NMR, UV and mass spectroscopies. The molecular structure of Ti(C9H6NO)2(OCH2CH2OCH3)2 has been determined by single‐crystal X‐ray structure analysis. The geometry at titanium is a distorted octahedron, with the nitrogen atoms of quinolinate occupying the trans position with respect to oxygens of the 2‐methoxyethoxy groups. The prepared quinolinate derivatives of titanium alkoxides are very stable towards hydrolysis and harsh conditions are required for hydrolytic cleavage. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
A series of trichlorotitanium complexes containing 2‐(1‐(arylimino)propyl)quinolin‐8‐olates was synthesized by stoichiometric reaction of titanium tetrachloride with the corresponding potassium 2‐(1‐(arylimino)propyl)quinolin‐8‐olates and was fully characterized by elemental analysis, nuclear magnetic resonance spectroscopy, and by single‐crystal X‐ray diffraction study of representative complexes. All titanium complexes, when activated with methylaluminoxane, exhibited high catalytic activity toward ethylene polymerization [up to 1.15 × 106 g mol?1(Ti) h?1] and ethylene/α‐olefin copolymerization [up to 1.54 × 106 g mol?1 (Ti) h?1]. The incorporation of comonomer was confirmed to amount up to 2.82 mol % of 1‐hexene or 1.94 mol % of 1‐octene, respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
6‐Benzimidazolylpyridyl‐2‐carboximidic half‐titanocene complexes, Cp′TiLCl (Cp′ = C5H5, MeC5H4, C5Me5, L = 6‐benzimidazolylpyridine‐2‐carboxylimidic, C1–C13 ), were synthesized and characterized along with single‐crystal X‐ray diffraction. The half‐titanocene chlorides containing substituted cyclopentadienyl groups, especially pentamethylcyclopentadienyl groups were more stable, while those without substituents on the cyclopentadienyl groups were easily transformed into their dimeric oxo‐bridged complexes, (CpTiL)2O ( C14 and C15 ). In the presence of excessive amounts of methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), all half‐titanocene complexes showed high catalytic activities for ethylene polymerization. The substituents on the Cp groups affected the catalytic behaviors of the complexes significantly, with less substituents favoring increased activities and higher molecular weights of the resultant polyethylenes. Effects of reaction conditions on catalytic behaviors were systematically investigated with catalytic systems of mononuclear C1 and dimeric C14 . With C1 /MAO, large MAO amount significantly increases the catalytic activity, while the temperature only has a slight effect on the productivity. In the case of C14 /MAO catalytic system, temperature above 60 °C and Al/Ti value higher than 5000 were necessary to observe good catalytic activities. In both systems, higher reaction temperature and low cocatalyst amount gave the polyethylenes with higher molecular weights. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3396–3410, 2008  相似文献   

5.
1,3‐Bis(5‐nitraminotetrazol‐1‐yl)propan‐2‐ol ( 5 ) was prepared by the reaction of 5‐aminotetrazole and 1,3‐dichloroisopropanol under basic conditions. Obtained 1,3‐bis(5‐aminotetrazol‐1‐yl)propan‐2‐ol ( 3 ) was nitrated with 100 % nitric acid. In this context in situ hydrolysis of the nitrate ester was studied. Metal and nitrogen‐rich salts of the neutral compound 5 were prepared and analyzed. Crystal structures of three salts and the sensitivities toward impact, friction and electrostatic discharge were determined as well. The performance values of the compounds were calculated using the EXPLO5 program. A detailed comparison of the different salts is also enclosed.  相似文献   

6.
This paper describes the complete assignment of all carbons and hydrogens of several newly synthesized 6‐substituted 2‐(2‐hydroxyaryl)benzoxazoles from 2,2′‐dihydroxydiaryl Schiff bases by the use of two‐dimensional NMR techniques. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
A series of 2‐aminopyridine Ni(II) complexes bearing different substituent groups {(2‐PyCH2NAr)NiBr, Ar = 2,4,6‐trimethylphenyl ( 3a) , 2,6‐dichlorophenyl ( 3b ), 2,6‐dimethylphenyl ( 3c) , 2,6‐diisopropylphenyl ( 3d ), 2,6‐difluorophenyl ( 3e ); (2‐PyCH2NHAr)2NiBr2, Ar = 2,6‐diisopropylphenyl ( 4a )} have been synthesized and investigated as precatalysts for ethylene polymerization in the presence of methylaluminoxane (MAO). High molecular weight branched polymers as well as short‐chain oligomers were simultaneously produced with these complexes. Enhancing the steric bulk of the ortho‐aryl‐substituents of the catalyst resulted in higher ratio of solid polymer to oligomer and higher molecular weight of the polymer. With ortho‐haloid‐substitution, the catalysts afforded a product with low polymer/oligomer ratio ( 3b ) and even only oligomers ( 3e ) in which C14H28 had the maximum content. Compared with complex 3d containing ionic ligand, complex 4a containing neutral ligand exhibited obviously low catalytic activity for ethylene polymerization. The molecular weight, molecular weight distribution, and microstructure of the resulted polymer were characterized by gel permeation chromatography and 13C NMR spectrogram. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1618–1628, 2008  相似文献   

8.
Reaction of 3‐(2‐methoxyphenyl)‐2‐sulfanylpropenoic acid [H2(o‐mpspa)] with SnPh3OH in the presence of di‐isopropylamine resulted in the formation of the complex [HQ][SnPh3(o‐mpspa)] (where HQ = di‐isopropylammonium cation and o‐mpspa = 3‐(2‐methoxyphenyl)‐2‐sulfanylpropenoato), which was characterized by mass spectrometry and vibrational spectroscopy, as well as by 1H, 13C and 119Sn NMR spectroscopy. The single‐crystal X‐ray structural analysis of the new complex shows a trigonal‐bipyramidal coordination geometry around the Sn atom where o‐mpspa behaves as a bidentate chelating ligand. Dimeric units arise from the existence of N? H…O hydrogen bonds between the NH2 group of the di‐isopropylammonium cation and the oxygen atoms of the two neighbouring carboxylato groups. The bacteriostatic activity of the complex is also reported. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The oxidation of tin(IV) bis‐amidophenolate (APiPr)2Sn · THF ( I ) by bromine and iodine leads to the formation of monoradical mixed‐ligand complexes (APiPr)(ISQiPr)SnBr · THF ( II ) and (APiPr)(ISQiPr)SnI · THF ( III ) or diradical complexes (ISQiPr)2SnBr2 ( IV ) and (ISQiPr)2SnI2 ( V ), respectively [APiPr = dianion 4, 6‐di‐tert‐butyl‐N‐(2, 6‐diisopropylphenyl)‐o‐amidophenolate; ISQiPr = radical‐anion 4, 6‐di‐tert‐butyl‐N‐(2, 6‐diisopropylphenyl)‐o‐iminobenzosemiquinone], depending on the molar ratio of reagents (2:1 or 1:1). According to EPR data for compounds II and III , the unpaired electron is delocalized between both organic ligands. The EPR spectrum of IV in toluene matrix at 130 K is typical for diradical species with S = 1 with parameters D = 530 G, E = 105 G. The mixed‐ligand complexes II and III are unstable and undergo to symmetrization leading to formation of IV or V . The molecular structures of IV and V are determined by X‐ray analysis.  相似文献   

10.
Diphenyltin(IV) complexes of N‐(3,5‐dibromosalicylidene)‐α‐amino acid, Ph2Sn[3,5‐Br2‐2‐OC6H2 CH?NCH(R)COO] (where R = H, Me, i‐Pr, Bz), and their 1:1 adducts with diphenyltin dichloride, Ph2Sn[3,5‐Br2‐2‐OC6H2CH?NCH(R)COO]·Ph2SnCl2, have been synthesized and characterized by elemental analysis, IR and NMR (1H, 13C and 119Sn) spectra. The crystal structure of Ph2Sn[3,5‐Br2‐2‐OC6H2CH?NCH(i‐Pr)COO] shows a distorted trigonal bipyramidal geometry with the axial locations occupied by a carboxylate–oxygen and a phenolic–oxygen atom of the ligand, and that of Ph2Sn[3,5‐Br2‐2‐OC6H2CH?NCH(i‐Pr)COO]·Ph2SnCl2 reveals that the two tin atoms are joined via the carbonyl atom of the ligand to form a mixed organotin binuclear complex. Bioassay indicates that the compounds possess better cytotoxic activity against three human tumor cell lines (HeLa, CoLo205 and MCF‐7) than cis‐platin and moderate antibacterial activity against two bacteria (E. coli and S. aureus). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Functionalized acid amides are widely used in biology, medicine, environmental chemistry and many other areas. Among them, pyridine‐substituted amides, in particular N‐(pyridin‐2‐yl)acetamide and its derivatives, play an important role due to their excellent chelating properties. The donor properties of these ligands can be effectively modified by introducing electron‐donating substituents (e.g. alkyl groups) into the heterocycle. On the other hand, substituents in the α‐position of the pyridine ring can create steric hindrance, which significantly influences the coordination number and geometry. To achieve a better understanding of these effects, copper(II) complexes with sterically demanding N‐(6‐methylpyridin‐2‐yl)acetamide ligands (L ) and monoanions of different size, shape and coordination ability have been chosen as model compounds. The crystal structures of three new compounds, bromidobis[N‐(6‐methylpyridin‐2‐yl‐κN )acetamide‐κO ]copper(II) bromide, [CuBr(C8H10N2O)]Br, (I), aquabis[N‐(6‐methylpyridin‐2‐yl‐κN )acetamide‐κO ]copper(II) dinitrate, [Cu(C8H10N2O)(H2O)](NO3)2, (II), and aquabis[N‐(6‐methylpyridin‐2‐yl‐κN )acetamide‐κO ]copper(II) bis(perchlorate), [Cu(C8H10N2O)(H2O)](ClO4)2, (III), have been determined by single‐crystal X‐ray diffraction analysis. It has been shown that the presence of the 6‐methyl group results in either a distorted square‐pyramidal or a distorted trigonal–bipyramidal coordination geometry around the CuII centres instead of the typical octahedral geometry observed when the methyl substituent is absent or occupies any other position on the pyridine ring. Moreover, due to the steric hindrance provided by the L ligands, only the bromide ligand, the smallest of the series, enters into the first coordination sphere of the CuII ion in (I). In (II) and (III), the vacant coordination site of the CuII ion is occupied by a water molecule, while the nitrate and perchlorate anions are not involved in coordination to the metal centre. The structures of (I)–(III) are characterized by the presence of one‐dimensional infinite chains formed by hydrogen bonds of the types N—H…Br [in (I)], N—H…O and O—H…O [in (II) and (III)] between the amide groups of the L ligands, the coordinated water molecules and the uncoordinated anions. The hydrogen‐bonded chains are further interconnected through π–π stacking interactions between the pyridine rings of the L ligands, with approximate interplanar separations of 3.5–3.6 Å.  相似文献   

12.
Eighteen novel 2‐(1‐aryl‐5‐methyl‐1,2,3‐triazol‐4‐yl)‐1,3,4‐oxadiazole derivatives and two acylhydrazone intermediate compounds were synthesized by various pathways starting from 1‐aryl‐5‐methyl‐1,2,3‐triazol‐4‐formhydrazide ( 1 ). All products were identified by spectroscopic analysis, and 2‐(1‐aryl‐5‐methyl‐1,2,3‐triazol‐4‐yl)‐5‐benzalthio‐1,3,4‐oxadiazole was further validated by X‐ray crystallography. Results from primary antibacterial activity tests indicated that most of the compounds were effective against E. coli, P. aeruginosa, B. subtilis and S. aureus.  相似文献   

13.
In this contribution the synthesis and full structural as well as spectroscopic characterization of three 5‐(1,2,4‐triazol‐3‐yl)tetrazoles along with selected energetic moieties like nitro, nitrimino, and azido groups are presented. The main goal is a comparative study on the influence of those variable energetic moieties on structural and energetic properties. A complete characterization including IR and Raman as well as multinuclear NMR spectroscopy of all compounds is presented. Additionally, X‐ray crystallographic measurements were performed and reveal insights into structural characteristics as well as inter‐ and intramolecular interactions. The standard enthalpies of formation were calculated for all compounds at the CBS‐4M level of theory and reveal high positive heats of formation for all compounds. The calculated detonation parameters (using the EXPLO5.05 program) are in the range of 8000 m s?1 (8097 m s?1 ( 5 ), 8020 m s?1 ( 6 ), 7874 m s?1 ( 7 )). As expected, the measured impact and friction sensitivities as well as decomposition temperatures strongly depend on the energetic moiety at the triazole ring. The C? C connection of a triazole ring with its opportunity to introduce a large variety of energetic moieties and a tetrazole ring, implying a large energy content, leads to the selective synthesis of primary and secondary explosives.  相似文献   

14.
Reaction of dichloro‐ and dibromodimethyltin(IV) with 2‐(pyrazol‐1‐ylmethyl)pyridine (PMP) afforded [SnMe2Cl2(PMP)] and [SnMe2Br2(PMP)] respectively. The new complexes were characterized by elemental analysis and mass spectrometry and by IR, Raman and NMR (1H, 13C) spectroscopies. Structural studies by X‐ray diffraction techniques show that the compounds consist of discrete units with the tin atom octahedrally coordinated to the carbon atoms of the two methyl groups in a trans disposition (Sn? C = 2.097(5), 2.120(5) Å and 2.110(6), 2.121(6) Å in the chloro and in the bromo compounds respectively), two cis halogen atoms (Sn? Cl = 2.4908(16), 2.5447(17) Å; Sn? Br = 2.6875(11), 2.7464(9) Å) and the two donor atoms of the ligand (Sn? N = 2.407(4), 2.471(4) Å and 2.360(5), 2.455(5) Å). In both cases, the Sn? N(pyridine) bond length is markedly longer than the Sn? N(pyrazole) distance. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
6‐(Diazomethyl)‐1,3‐bis(methoxymethyl)uracil ( 5 ) was prepared from the known aldehyde 3 by hydrazone formation and oxidation. Thermolysis of 5 and deprotection gave the pyrazolo[4,3‐d]pyrimidine‐5,7‐diones 7a and 7b . Rh2(OAc)4 catalyzed the transformation of 5 into to a 2 : 1 (Z)/(E) mixture of 1,2‐diuracilylethenes 9 (67%). Heating (Z)‐ 9 in 12n HCl at 95° led to electrocyclisation, oxidation, and deprotection to afford 73% of the pyrimido[5,4‐f]quinazolinetetraone 12 . The Rh2(OAc)4‐catalyzed reaction of 5 with 3,4‐dihydro‐2H‐pyran and 2,3‐dihydrofuran gave endo/exo‐mixtures of the 2‐oxabicyclo[4.1.0]heptane 13 (78%) and the 2‐oxabicyclo[3.1.0]hexane 15 (86%), Their treatment with AlCl3 or Me2AlCl promoted a vinylcyclopropane–cyclopentene rearrangement, leading to the pyrano‐ and furanocyclopenta[1,2‐d]pyrimidinediones 14 (88%) and 16 (51%), respectively. Similarly, the addition product of 5 to 2‐methoxypropene was transformed into the 5‐methylcyclopenta‐pyrimidinedione 18 (55%). The Rh2(OAc)4‐catalyzed reaction of 5 with thiophene gave the exo‐configured 2‐thiabicyclo[3.1.0]hexane 19 (69%). The analoguous reaction with furan led to 8‐oxabicyclo[3.2.1]oct‐2‐ene 20 (73%), and the reaction with (E)‐2‐styrylfuran yielded a diastereoisomeric mixture of hepta‐1,4,6‐trien‐3‐ones 21 (75%) that was transformed into the (1E,4E,6E)‐configured hepta‐1,4,6‐trien‐3‐one 21 (60%) at ambient temperature.  相似文献   

16.
Reaction of Ndcl3 with AlCl3 and mesitylene in benzene gives complex [Nd(η6‐1, 3, 5‐C6H3Me3)‐(AlCl4)3](C6H6) (1) which was characterized by elemental analysis, IR spectra, MS and X‐ray diffractions. The X‐ray determination indicates that 1 has a distorted pentagonal bipyramidal geometry and crystallizes in the monoclinic, space group P21/n with a = 0.9586(2), b = 1.1717(5), c = 2.8966(7) nm, β = 90.85 (2)°, V = 3.2529 (6) nm3,Dc= 1.573 g/cm3, Z = 4. A comparison of bond parameters for all the reported Ln (η6‐Ar) (AlCl4)3 complexes indicates that the bond distance of La? C is shortened with the increasing of methyl group on benzene and with the decreasing of radius of lanthanide ions.  相似文献   

17.
Two nitrogen‐rich alkali metal salts based on nitrogen‐rich anion [Zn(bta)2]2–: {[Na2Zn(bta)2(H2O)8] · H2O}n ( 1 ) and {[K2Zn(bta)2(H2O)4]}n ( 2 ) were synthesized by reactions of alkali hydroxide, N,N‐bis(1H‐tetrazol‐5‐yl)amine (H2bta), and zinc chloride in aqueous solutions. The crystal structures of 1 and 2 were determined by low temperature single‐crystal X‐ray diffraction and fully characterized by elemental analysis and FT‐IR spectroscopy. The structures demonstrate that an infinite 1‐dimensional (1D) chain structure is constructed by Na+ ions and bridging water molecules in compound 1 , which is connected by extensive hydrogen bonds forming a complex 3D network, whereas compound 2 features a more complicated 3D metal‐organic framework (MOF). The thermal behaviors of 1 and 2 were investigated by differential scanning calorimetry (DSC) measurements. The DSC results illustrate that both compounds exhibit high thermal stabilities (decomposition temperature > 345 °C). In addition, the heats of formation were calculated on the basis of the experimental constant‐volume energies of combustion measured by using bomb calorimetry. Lastly, the sensitivities towards impact and friction were assessed according to Bundesamt für Materialforschung (BAM) standard methods.  相似文献   

18.
In our continuing search for potential anticancer candidates, 2‐(3‐methoxyphenyl)‐6‐pyrrolidinyl‐4‐quinazolinone ( JJC‐1 ) was selected as the lead compound. Starting 5‐pyrrolidinyl‐2‐aminobenzamide was prepared using standard methodology from 5‐chloro‐2‐nitrobenzoic acid by reaction with SOCl2, NH3, pyrrolidine, and H2. The starting benzamide then was reacted with 2‐substituted benzaldehyde or benzoyl chloride in N,N‐dimethylacetamide (DMAC) in the presence of NaHSO3 at 150 °C. Thermal cyclodehydration/dehydrogenation gave the target 6‐pyrrolidinyl‐2‐(2‐substituted phenyl)‐4‐quinazolinones ( 15–22 ). These target compounds were assayed for their cytotoxicity in vitro against six cancer cell lines, including human monocytic leukemia cells (U937), mouse monocytic leukemia cells (WEHI‐3), human hepatoma cells (HepG2, Hep3B) and human lung carcinoma cells (A549, CH27). Most of them exhibited significant cytotoxic effect toward U937 and WEHI‐3 cells, with EC50 values ranging from 0.30 to 10.10 μM. Compound 19 was investigated further for its action mechanisms. Preliminary findings indicated that compound 19 induced G2/M arrest and apoptosis on U937 cells.  相似文献   

19.
Based on the bis‐triazole ligand 2, 6‐bis(1, 2,4‐triazole‐4‐yl)pyridine (L), the triazole‐iron(II) complexes [Fe(L)2(dca)2(H2O)2] · 2H2O ( 1 ) (Nadca = sodium dicyanamide), {[Fe(μ2‐L)2(H2O)2]Cl2}n ( 2 ), and {[Fe(μ2‐L)2(H2O)2](ClO4)2 · L · H2O}n ( 3 ) were isolated by solvent diffusion methods. When iron(II) salts and Nadca were used, compound 1 was isolated, which contains mononuclear Fe(L)2(dca)2(H2O)2 units. When FeCl2 or FeClO4 were used, one‐dimensional (1D) cation iron(II) chains ( 2 ) and two‐dimensional (2D) cation iron(II) networks ( 3 ) were isolated indicating anion directing structural diversity. Moreover, variable‐temperature magnetic susceptibility data of 1 – 3 were recorded in the temperature range 2–300 K. The magnetic curve of complex 2 was fitted by using the classical spin Heisenberg chain model indicating anti‐ferromagnetic interactions (J = –5.31 cm–1). Obviously complexes 1 – 3 show no detectable thermal spin crossover behaviors, the lack of spin‐crossover behavior may be correlated with FeN4O2 coordination spheres in 1 – 3 .  相似文献   

20.
Polymerization catalysts based on N,N‐dialkylcarbamato complexes of titanium(IV) appear particularly interesting, because these novel catalytic precursors are rather cheap and easy to synthesize and handle. This contribution reports ethylene polymerization behavior of titanium(IV) complexes of general formula Ti(O2CNR2)4 R = Me ( I ) and Et ( II ) and TiCl2(O2CNMe2)2 ( III ). These precursors in conjunction with methylaluminoxane resulted active catalysts for the polymerization of ethylene, affording high‐density polyethylene with limited branch content. The influence of the polymerization parameters was studied with particular reference to the type of catalyst components, solvent, temperature, monomer concentration, and Al/Ti ratio. The nature of the solvent appears crucial for catalytic performances: when toluene was replaced by chlorobenzene, a significant increase of the productivity was ascertained. The obtained polymers were characterized by DSC, size exclusion chromatography, FTIR, and NMR techniques. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号