首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two sets of water‐soluble poly(phenylene vinylene)s were synthesized and their optical properties were studied. The aqueous solubility of all these polymers is rendered by pendant sulfonate groups. One set of polymers (polymer I series) contains, in addition to the sulfonate pendants, dimethoxy substituents, while the other (polymer II series) contains oligo(ethylene oxide) side chains. Within each set, polymers containing lithium (Ia and IIa), sodium (Ib and IIb), and potassium (Ic and IIc) counter ions were prepared. The two sets of polymers showed different properties from physical appearance (fiber vs film) to thermal properties and to optical properties. It was found that set I polymers, with shorter side chains, exhibit stronger aggregation in aqueous solutions than set II polymers, which led to their lower fluorescence quantum yields and lower polymer‐to‐MV2+ quenching efficiencies. Within each set, the effect of counter ions on optical properties was noted. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5123–5135, 2007  相似文献   

2.
2,5‐Bis(2‐bromofluorene‐7‐yl)silole was prepared by a modified one‐pot synthesis with a reverse addition procedure, from which novel silole‐containing polyfluorenes with binary random and alternating structures (silole contents between 4.5 and 25% and high Mw up to 509 kDa were successfully synthesized. The well‐defined repeating unit of the alternating copolymer comprises a terfluorene and a silole ring. Optoelectronic properties including UV absorption, electrochemistry, photoluminescence (PL), and electroluminescence (EL) of the copolymers were examined. The different excitation energy transfers from fluorene to silole of the copolymers in solution and in the solid state were compared. The films of the copolymers showed silole‐dominant green emissions with high absolute PL quantum yields up to 83%. EL devices of the copolymers with a configuration of ITO/PEDOT/copolymer/Ba/Al displayed exclusive silole emissions peaked at around 543 nm and the highest EL efficiency was achieved with the alternating copolymer. Using the alternating copolymer and poly(9,9‐dioctylfluorene) as the blend‐type emissive layer, a maximum external quantum efficiency of 1.99% (four times to that of the neat film) was realized, which was a high efficiency so far reported for silole‐containing polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 756–767, 2007  相似文献   

3.
A new platform has been developed for DNA lesion detection using a cationic conjugated polymer (CCP). DNA that contains two adjacent thymine bases is irradiated with ultraviolet light to allow for the formation of cyclobutane pyrimidine dimers and pyrimidine–pyrimidone dimers. The DNA lesions block the primer extension, and the base labeled with fluorescein cannot be incorporated into the DNA strand. Addition of the CCP leads to inefficient fluorescence resonance energy transfer (FRET) from CCP to fluorescein. For the case without DNA lesions, successful primer extension allows for efficient FRET between them. In view of the FRET signal changes, the DNA lesions can be detected. This new protocol offers a convenient detection for DNA lesions in aqueous solution without any isolation and washing steps.

  相似文献   


4.
Summary: Cationic water‐soluble dendritic poly(fluorene)s with positively charged amines on the exterior (PFP‐G0–2) can be prepared by a macromonomer (generation‐by‐generation) approach. The charge densities of PFP‐G0–2 can control their distances to DNA by electrostatic interactions. The PFP‐G2 with higher generation of dendritic side chains possesses a higher charge density, and gives rise to efficient fluorescence resonance energy transfer (FRET) to a signaling fluorescein labeled at the terminus of DNA. These new conjugated polymers form less aggregates and yield more efficient FRET in a tetrahydrofuran/H2O mixed solvent as compared to in pure water. The sensitivity of the DNA sensor is improved by utilizing highly dendritic conjugated polymers.

Structure of the dendritic conjugated polymer PFP‐G2.  相似文献   


5.
Three sulfonato‐containing fluorene‐based anionic water‐soluble conjugated polymers, which are specially designed to link fluorene with alternating moieties such as bipyridine ( P1 ), pyridine ( P2 ), and benzene ( P3 ) have been synthesized via the Pd‐catalyzed Sonogashira‐coupling reaction, respectively. These polymers had good solubility in water and showed different responses for transition metal ions with different valence in aqueous environments: the fluorescence of bipyridine‐containing P1 can be completely quenched by addition of all transition metal ions selected and showed a good selectivity for Ni2+; the pyridine‐containing P2 had a little response for monovalent and divalent metal ions while showed good quenching with the addition of trivalent metal ions (with a special selectivity for Fe3+); P3 had responses only for the trivalent metal ions within the ionic concentration we studied. After investigation of the UV‐vis absorption spectra, PL emission spectra, DLS, and fluorescence lifetime of P1 – P3 in aqueous solution when adding transition metal ions, we found that the different spectrum responses of these polymers are attributed to the different coordination ability of the units linked with fluorene in the main chain. The energy or electron‐transfer reactions were the main reason for fluorescence quenching of P1 and P2 . On the other hand, interchain aggregation caused by trivalent metal ions lead to fluorescence quenching for P3 and also caused partly fluorescence quenching of P1 and P2 . These results revealed the origin of ionochromic effects of these polymers and suggested the potential application for these polymers as novel chemosensors with higher sensing sensitivity in aqueous environments. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5057–5067, 2009  相似文献   

6.
Two water‐soluble cationic conjugated polyelectrolytes ( P1 and P2 ) containing diacetylene, diketopyrrolopyrrole (DPP), and fluorene units were synthesized with Glaser‐Hay coupling reaction as the key step. The narrow bandgap DPP units and the wide bandgap fluorene units in the cationic polyelectrolytes might form an energy donor‐acceptor molecule architectures, in which DPP units serve as an acceptor of the fluorescent resonance energy transfer. The addition of calf thymus DNA enhances the fluorescent resonance energy transfer from fluoreneethynylene segments to DPP units, which results in a sensitive color change from blue to red in the PL spectra and allows naked‐eye detection of DNA with low concentration. In addition, the detection of DNA with P1 and P2 is high selective because it is not interfered by common ions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
C60‐cored star polyfluorenes were synthesized and fully characterized. A high yield (81%) hexakisaddition of C60 was developed by using Prato reaction and bulky fluorene addends. Suzuki polycondensation of the hexakisadducts of C60 carrying six 2‐bromofluorene addends and AB‐type monomer (2‐bromo‐9,9‐dioctylfluorenyl‐4,4,5,5‐tetramethyl‐ [1,3,2]‐dioxaborane) with Pd(PPh3)4 as the catalyst precursor afforded the desired C60‐cored star polyfluorenes. Their three‐dimensional structure can effectively reduce the aggregation of the polyfluorene chains. Annealing studies indicated that the C60‐cored star polyfluorenes are of good color stability. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4696–4706, 2007  相似文献   

8.
A phenylenevinylene‐thiophene‐phenyleneethynylene copolymer, poly{[1′,4′‐bis‐(thienyl‐vinyl)]‐2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylene‐vinylene‐alt‐1,4‐dioctyloxyl‐phenyleneethynylene}(PTPPV‐ PPE), was synthesized by the Sonogashira Pd‐catalyzed cross‐coupling reaction. The copolymer possesses higher thermal decomposition temperature (Td = 382°C) compared with poly{[1′,4′‐bis‐ (thienyl‐vinyl)]‐2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylene‐vinylene} (PTPPV). The absorption and photoluminescence (PL) peaks of PTPPV‐PPE solution and solid film locate in between those of the homopolymers of PTPPV and poly(1,4‐dioctyloxyl‐phenyleneethynylene) (PPE), and closer to that of PTPPV. Photovoltaic cell was fabricated based on the blend of PTPPV‐PPE and PCBM with a weight ratio of 1:1. The primary result shows an open circuit voltage (Voc) of 0.72 V which is higher than that of the PTPPV (0.67 V), and a power conversion efficiency (PCE) of 0.3% under the illumination of AM1.5, 100 mW/cm2 which is much better than that of PPEs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Novel glucosamine hydrochloride functionalized water‐soluble conjugated polyfluorene was easily synthesized through Cu(I)‐catalyzed azide/alkyne “click” ligation and Suzuki coupling polymerization. The water‐solubility and biocompatibility of the polymer were improved after grafting glucosamine hydrochloride to the side chains of the conjugated polymer. As a fluorescent model system of chitosan, its interaction with single‐stranded DNA was studied by spectrofluorometric titration.

  相似文献   


10.
This article concerns the hydrosilylation polyaddition of 1,4‐bis(dimethylsilyl)benzene ( 1 ) with 4,4′‐diethynylbiphenyl, 2,7‐diethynylfluorene ( 2b ), and 2,6‐diethynylnaphthalene with RhI(PPh3)3 catalyst. Trans‐rich polymers with weight‐average molecular weights (Mw's) ranging from 19,000 to 25,000 were obtained by polyaddition in o‐Cl2C6H4 at 150–180 °C, whereas cis‐rich polymers with Mw's from 4300 to 34,000 were obtained in toluene at 0 °C–r.t. These polymers emitted blue light in 4–81% quantum yields. The cis polymers isomerized into trans polymers upon UV irradiation, whereas the trans polymers did not. The device having a layer of polymer trans‐ 3b obtained from 1 and 2b demonstrated electroluminescence without any dopant. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2774–2783, 2004  相似文献   

11.
Poly(2,7‐carbazole) neutral polymers (PC‐N, PC‐NOH, and PC‐P) and polyelectrolytes (PC‐NBr and PC‐SO3Na) with hydrophilic pendant groups of ammonium, phosphonate, and sulfonate were synthesized as interlayers for cathode modifications in bulk‐heterojunction photovoltaic cells (BHJ PVCs). The absorptions of the polymers were determined by the poly(2,7‐carbazole) backbone, showing absorption peaks at ~390 nm for their solutions and films. Because of large intermolecular interactions, excimer emissions with wavelengths higher than 500 nm were found in the photoluminescence spectra of the films of the polymers, which weakened the light emissions of the polymers. PC‐N, PC‐NBr, PC‐NOH, and PC‐P possessed comparable HOMO levels of ?5.23 eV and LUMO levels of ?2.4 eV, but HOMO and LUMO levels of PC‐SO3Na were up‐lying to ?4.91 and ?2.12 eV, respectively. PC‐N, PC‐NBr, PC‐NOH, and PC‐P were selected to construct thin interlayers in BHJ PVCs with PFO‐DBT35:PCBM = 1:4 as the active layer. Compared with traditional Al cathode, bilayer cathodes with the interlayers showed improvements of open‐circuit voltages and short‐circuit currents of the PVCs. PC‐NOH was the best for the photovoltaic performances and over 20% increase of power conversion efficiency (PCE) was achieved. The bilayer cathodes would have great potential to further elevate PCE of BHJ PVCs with other active layer materials. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
Two new π‐conjugated polymers containing 1,3,5‐triazine units in the main chain, Pa and Pb , are reported. Pa and Pb (R = H and ? OCH3, respectively) showed blue photoluminescence emissions with quantum yields of more than 50% in toluene. In the solid state, Pa and Pb showed photoluminescence maximum emission peaks at 479 and 475 nm, respectively. Electrochemically, Pa and Pb showed good stability and reversibility under repeated electrochemical reduction. The polymers had glass‐transition temperatures higher than 90 °C and had 5 wt % loss temperatures higher than 400 °C. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6554–6561, 2005  相似文献   

13.
New amorphous semiconducting copolymers, poly(9,9‐dialkylfluorene)‐alt‐(3‐dodecylthienyl‐divinylbenzene‐3‐dodecylthienyl) derivatives (PEFTVB and POFTVB), were designed, synthesized, and characterized. The structure of copolymers was confirmed by H NMR, IR, and elemental analysis. The copolymers showed very good solubility in organic solvents and high thermal stability with high Tg of 178–185 °C. The weight average molecular weight was found to be 107,900 with polydispersity of 3.14 for PEFTVB and 76,700 with that of 3.31 for POFTVB. UV–vis absorption studies showed the maximum absorption at 428 nm (in solution) and 435 nm (in film) for PEFTVB and at 430 nm (in solution) and 436 nm (in film) for POFTVB. Photoluminescence studies showed the emission at 498 nm (in solution) and 557 nm (in film) for PEFTVB and at 498 nm (in solution) and 536 nm (in film) for POFTVB. The solution‐processed thin‐film transistors showed the carrier mobility of 2 × 10?4 cm2 V?1 s?1 for PEFTVB‐based devices and 2 × 10?5 cm2 V?1 s?1 for POFTVB‐based devices. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3942–3949, 2010  相似文献   

14.
Three polyfluorene derivatives which have oxetane‐containing phenyl group at C‐9 position were synthesized via the palladium‐catalyzed Suzuki‐coupling reaction. The synthesized polymers PFB, PFG, and PFR emit blue, green, and red light, respectively. A double‐layer device with the configuration of ITO/PEDOT/polymer/Ca/Al using PFB as the active layer showed a threshold voltage of 5 V, a maximum brightness of 2030 cd/m2, and a maximum current efficiency of 0.35 cd/A. Using PFG as the active layer, the device exhibited a threshold voltage of 6 V, a maximum brightness of 6447 cd/m2, and a maximum current efficiency of 1.27 cd/A. Using PFR as the active layer, the device showed a threshold voltage of 4 V, a maximum brightness of 2135 cd/m2, and a maximum current efficiency of 0.16 cd/A. Better electroluminescent performance was also found based on different design of device structures. Due to photo‐crosslinking property of oxetane groups, the UV‐exposed thin films are insoluble in common organic solvents. A device comprised of blue, green, and red‐emissive pixels was successfully fabricated by spin‐coating and photo‐lithographic processes. In addition, a white light‐emitting device with CIE coordinate of (0.34, 0.33) was achieved by blending PFR into a host material PFB as the active layer. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 516–524, 2010  相似文献   

15.
Two novel ID‐based water‐soluble conjugated polymers (+)‐PIDPV and (?)‐PIDPV were synthesized by Heck coupling reaction. These two polyelectrolytes are both consisted of isoindigo units and phenylenevinylene units. In the UV–vis absorption spectra, both (+)‐PIDPV and (?)‐PIDPV exhibit broad absorption bands that almost cover the whole visible region. Photophysical investigations reveal that the fluorescence of water‐soluble PPV can be efficiently quenched by oppositely charged PIDPV at a very low concentration. Cationic PPV shows an efficient quenching effect with ΚSV = 1.01 × 106 M?1 in the presence of (?)‐PIDPV while the anionic PPV gives a lager quenching constant with ΚSV = 1.71 × 106 M?1 in the presence of (+)‐PIDPV. Furthermore, the blend films of water‐soluble PPVs and oppositely charged PIDPV also exhibit excellent quenching effect. These properties suggest that (+)‐PIDPV and (?)‐PIDPV are promising materials in the application of ionic photoactive layer in the organic solar cells. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2223–2237  相似文献   

16.
Alternating π‐conjugated copolymers of 1,8‐naphthyridine‐2,6‐diyl ( 1,8‐Nap ) with 9,9‐dioctylfluorene‐2,7‐diyl ( P(Flu‐Ph‐1,8‐Nap) ) and 2,5‐didodecyloxy‐1,4‐phenylene ( P(ROPh‐Ph‐1,8‐Nap) ) have been synthesized by Pd‐catalyzed organometallic polycondensation. The copolymers showed UV‐vis absorption peaks at around 390 nm in o‐dichlorobenzene. The polymers were photoluminescent both in o‐dichlorobenzene and in the solid state. In o‐dichlorobenzene, the emission peaks of P(Flu‐Ph‐1,8‐Nap) and P(ROPh‐Ph‐1.,8‐Nap) appeared at λEM = 440 and 471 nm, with quantum yields of 87% and 66%, respectively. Electrochemical data revealed that 1,8‐Nap behaved as a typical electron‐accepting unit. When P(Flu‐Ph‐1,8‐Nap) was treated with 10‐camphorsulfonic acid, the emission peak shifted to λEM = 598 nm. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
A new p‐type conjugated copolymer, poly(9,10‐diethynylanthracene‐alt‐9,9‐didodecylfluorene) (PDADF), which is composed of ethynyl‐linked alternating anthracene/fluorene, is synthesized via a palladium(II)‐catalyzed Sonogashira coupling reaction with 9,10‐diethynylanthracene and 2,7‐diiodo‐9,9‐didodecyl‐fluorene. The obtained polymer is confirmed by FTIR, 1H‐NMR, 13C‐NMR and elemental analysis. The PDADF had very good solubility in organic solvents such as chloroform and had a weight average molecular weight of 29,300 with a polydispersity index of 1.29. The PL maximum of the polymer was found at 533 and 568 nm for a solution and 608 nm for film, respectively. The highest occupied molecular orbital (HOMO) energy of the polymer is ?5.62 eV as measured via cyclic voltammetry (CV). A solution‐processed thin film transistor device showed a carrier mobility value of 6.0 × 10?4 cm2/Vs with a threshold voltage of ?17 V and a capacitance (Ci) of 10 nF/cm2. The out‐of‐plane and in‐plane GIXD pattern of spin‐coated polymer on SiO2 dielectric surfaces showed an amorphous halo near 2θ = 20°. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1609–1616, 2009  相似文献   

18.
Novel conjugated polymers containing 3,9‐ or 2,9‐linked carbazole units in the main chain were synthesized by the polycondensation of ethynyl‐ and iodo‐substituted 9‐arylenecarbazolylene monomers, and their optical and electrical properties were studied. Polymers with weight‐average molecular weights of 3400–12,000 were obtained in 76–99% yields by the Sonogashira coupling polycondensation in piperidine or tetrahydrofuran (THF)/piperidine at 30 °C for 48 h. All the 3,9‐linked polymers absorbed light around 300 nm. The para‐phenylene‐linked polymer also absorbed light around 350 nm, while meta‐phenylene‐linked one did not. The 3,9‐linked polymers absorbed light at a wavelength longer than the 2,9‐linked one. The polymers emitted blue fluorescence with high quantum yields (0.21–0.78) upon excitation at the absorption maxima. The polymers were oxidized around 0.6 V, and reduced around 0.5 V. Poly( 1 ) showed the dark conductivity of 3.7 × 10?11 S/cm (103 V/cm). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3506–3517, 2009  相似文献   

19.
Two series of poly(2,3‐diphenyl‐1,4‐phenylenevinylene) (DP‐PPV) derivatives containing multiple bulky substituents were synthesized. In the first series, two different groups were incorporated on C‐5,6 positions of the phenylene moiety to increase steric hindrance and to obtain blue‐shifted emissions. In the second series, bulky fluorenyl groups with two hexyl chains on the C‐9 position were introduced on two phenyl pendants to increase the solubility as well as steric hindrance to prevent close packing of the main chain. Polymers with high molecular weights and fine‐tuned electro‐optical properties were obtained by controlling the feed ratio of different monomers during polymerization. The maximum photoluminescent emissions of the thin films are located between 384 and 541 nm. Cyclic voltammetric analysis reveals that the band gaps of these light‐emitting materials are in the range from 2.4 to 3.3 eV. A double‐layer EL device with the configuration of ITO/PEDOT/P4/Ca/Al emitted pure green light with CIE′1931 at (0.24, 0.5). Using copolymer P6 as the emissive layer, the maximum luminescence and current efficiency were both improved when compared with the homopolymer P4. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6738–6749, 2006  相似文献   

20.
Novel π‐conjugated polymers ( 8 – 10 ) were prepared by the palladium‐catalyzed Sonogashira coupling reaction of three kinds of phosphole‐ring‐containing monomers with 2,5‐dihexyloxyl‐1,4‐diethynylbenzene. The obtained polymers ( 8 – 10 ) were regioregulated with the 2,5‐substituted phosphole ring in the polymer main chain and characterized with 1H, 13C, and 31P NMR and FTIR. Polymers 8 – 10 were found to have an extended π‐conjugated system according to the results of UV–vis absorption spectra. In the fluorescence emission spectra of 8 – 10 , moderate emission peaks were observed in the visible blue‐to‐green region. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2867–2875, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号