首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 428 毫秒
1.
The quadrupole 209Bi spin–spin and spin–lattice relaxation were studied within 4.2–300 K for pure and doped Bi4Ge3O12 single crystals which exhibit, as was previously found, anomalous magnetic properties. The results revealed an unexpectedly strong influence of minor amounts of paramagnetic dopants (0.015–0.5 mol.%) on the relaxation processes. Various mechanisms (quadrupole, crystal electric field, electron spin fluctuations) govern the spin–lattice relaxation time T 1 in pure and doped samples. Unlike T 1, the spin–spin relaxation time T 2 for pure and Nd-doped samples was weakly dependent on temperature within 4.2–300 K. Doping Bi4Ge3O12 with paramagnetic atoms strongly elongated T 2. The elongation, although not so strong, was also observed for pure and doped crystals under the influence of weak (~30 Oe) external magnetic fields. To confirm the conclusion about strong influence of crystal field effects on the temperature dependence of T 1 in the temperature range 4.2–77 K, the magnetization vs. temperature and magnetic field was measured for Nd- and Gd-doped Bi4Ge3O12 crystals using a SQUID magnetometer. The temperature behavior of magnetic susceptibility for the Nd-doped crystal was consistent with the presence of the crystal electric field effects. For the Gd-doped crystal, the Brillouin formula perfectly fitted the curve of magnetization vs. magnetic field, which pointed to the absence of the crystal electric field contribution into the spin–lattice relaxation process in this sample.  相似文献   

2.
The results of magnetic measurements performed on U(MnxAl1−x)2 compounds in the temperature range 4.2K < T < 800K are reported. In the low temperature range (T < 200K), UMn2 shows a Pauli-type paramagnetism. Above 420K a Curie-Weiss behaviour is evidenced. The magnetic properties of U(MnxAl1−x)2 compounds were analysed assuming a superposition of a temperature dependent term on a Pauli-type contribution, χO. The effective moments as well as the χO values were determined both in the low (T < 200K) and high (T > 420K) temperature range. The experimental data were discussed considering changes in the band structure and/or quenching of spin fluctuations.  相似文献   

3.
The polycrystalline samples La0.67Ca0.33Mn(1?x)Fe x O3 (x?=?0.00,?0.01,?0.03, and 0.1) have been grown in single phase by solid state route. The analysis of the reaction has been done by thermogravimetry and differential thermal analysis measurements. DC electrical resistivity measurements have been carried out down to 15?K. The samples with x?=?0.00, 0.01, and 0.03 exhibit metal–insulator (MI) transition at temperatures 221.5?K, 217?K, and 215?K respectively, whereas the sample with x?=?0.1 is insulating in nature for entire temperature range. Interestingly, the electric transport properties of these samples are not consistent with their magnetic phase transitions and the samples show MI transition at a temperature, T MI, which is significantly lower than the paramagnetic to ferromagnetic transition temperature (T c). The resistivity data below T MI has been analyzed using the empirical relation ρ?=?ρ0?+?ρ1 T n and the data above this temperature has been analyzed using two existing models, Mott's variable range hopping model and spin polaronic conduction model.  相似文献   

4.
57Fe M?ssbauer effect studies of La1.65Eu0.20Sr0.15CuO4 doped with 0.5 at% 57Fe performed in the temperature region 300 K > T > 4.2 K give an onset temperature for magnetic ordering of K. This temperature practically is the same as that found in Nd doped La2-xSrxCuO4. It indicates that the magnetic ordering temperature in the LTT phase of rare earth (RE) doped La2-xSrxCuO4 is independent of the RE moment. The direction of the 57Fe magnetic moment in the magnetically ordered state is within the CuO2 plane, while it has been found to be parallel to the c-axis in Nd doped La2-xSrxCuO4. Received: 23 June 1998 / Accepted: 14 July 1998  相似文献   

5.
The magnetic properties of nanomaterials based on vanadium oxide (multiwall nanotubes, nanorods, and nanolayers) have been investigated in the temperature range of 1.8–220 K by high-frequency (60-GHz) EPR. A transition from a ferromagnetic temperature dependence to an antiferromagnetic temperature dependence has been observed in nanorods and nanotubes with a decrease in the temperature. The FM-AFM crossover observed near T C ∼ 110 K is accompanied by a low-temperature increase in the Curie constant by a factor of 2.7–7. The comparison of the experimental data for various VO x nanoparticles indicates that the most probable cause of the change in the type of magnetic interaction is a change in the concentration of V4+ magnetic ions.  相似文献   

6.
The crystal structure and the magnetic ordering pattern of the electrically insulating perovskite CeVO3 was investigated by high-resolution powder X-ray diffraction and single-crystal neutron diffraction. A structural phase transition from an orthorhombic to a monoclinic structure (with space groups Pbnm and P21/b, respectively) was observed upon cooling below T s = 136 K. This transition is associated with a strong distortion of the VO6-octahedra and can be attributed to orbital ordering. A magnetic ordering transition driven by exchange interactions between vanadium moments is observed at T N = 124 K, and antiferromagnetic interactions between magnetic moments on vanadium and cerium ions induce a progressive magnetic polarization of the cerium sublattice at lower temperatures. The full magnetic structure is described by a superposition of the modes (C x , F y , −) and (F x , C y , −). The unit cell volume and the tilt angles of the VO6-octahedra in the CeVO3-crystal structure are anomalous compared to those of other members of the series RVO3 (R = lanthanide atom), and the ordered magnetic moments on both vanadium and cerium sublattices at low temperatures are considerably smaller than the free-ion values of V3+ and Ce3+. Possible origins of this behavior are discussed.  相似文献   

7.
Magnetic properties of amorphous Mn x B100–x alloys ranging fromx = 30 to 70 under high magnetic fields and low ac magnetic fields in the temperature range from 4.2 K to room temperature have been investigated. Samples which have Mn concentrations of aboutx = 40–60 show spin-glass-like properties in the low-temperature region. This spin-glass characteristics result from a frustration in the spin system which is caused by the competition of ferromagnetic and antiferromagnetic interactions between randomly distributed Mn atoms. Both magnetization at 4.2 K and paramagnetic momentP eff as a function of Mn concentration show a peak aroundx 44 which drops rapidly towards both sides of the Mn content.  相似文献   

8.
27Al and55Mn nuclear magnetic resonance shift,K, and27Al spin lattice relaxation time,T 1, have been measured for the six-dimensional face-centered icosahedral quasicrystals, Al75-x Pd15Mn10+x withx=0, 2 and7. The Al75Pd15Mn10 quasicrystal exhibits a temperature independent Knight shiftK and(T 1 T)–1=0.022±0.002 (K s)–1 in a temperature range from room temperature to 5 K because there exist no Mn atoms with local magnetic moment. The replacement of Al with Mn drastically decreases the27AlK, the55MnK andT 1 of27Al, andthe27AlK becomes negative. There is an additional contribution to the spin lattice relaxation time independent of temperature. This is considered to be due to the presence of a localized magnetic moment in the replaced Mn atoms.  相似文献   

9.
The magnetotransport and magnetoresistive (MR) properties of manganese-based La0.67Ca0.33MnO3 perovskite with different grain sizes are reported. The electrical resistivity was measured as a function of temperature in magnetic fields of 0.5 and 1 T. The insulator–metal transition temperature, T IM, shifted to a higher temperature with the application of the magnetic field. In zero field, T IM is almost constant (∼271 K) for all samples except for the sample with the largest grain size, where T IM=265 K. The temperature dependence of resistivity was fitted with several equations in the metallic (ferromagnetic) region and the insulating (paramagnetic) region. The density of states at the Fermi level, N(E F), and the activation energy of electron hopping were estimated by fitting the resistivity versus temperature curves. The ρT 2 curves are nearly linear in the metallic regime, but the ρT 2.5 curves exhibit a deviation from linearity. The variable range hopping model and small polaron hopping model fit the data well in the high-temperature region, indicating the existence of the Jahn–Teller distortion that localizes the charge carriers. MR was found to increase with an increase in the magnetic field, an effect which is attributed to the intergrain spin tunneling effect.  相似文献   

10.
Nuclear spin relaxation rate T?11 for 51V in an incommensurate antiferromagnetic Cr1?xVx system has been measured in a temperature range between 1.3 and 4.2 K and in a range of magnetic field from 0 to 13.3 kOe by using a field-cycling nuclear magnetic resonance technique. In the (T1T)?1 vs x curve a pronounced maximum was observed near the critical concentration (xc~0.040). Furthermore for alloys with x = 0.038 and 0.040 a deviation from the Korringa relation, T1T = constant, was observed. The experimental results of (T1T)?1 are interpreted in terms of the spin-fluctuation and d-orbital contributions.  相似文献   

11.
The magnetic behaviour of very dilute 57Fe(≈20 ppm) impurities in paramagnetic NixRh1?x (x = 0.42 and x = 0.55) alloys has been studied by Moessbauer spectroscopy in the temperature range between 11 and 0.05 K and in external fields up to 5.6 T. The magnetic moment associated with the Fe-impurity is determined via the dependence of the hyperfine magnetic field on applied magnetic field and temperature. Below 4.2 K deviations from a free spin behaviour are found. The saturation hyperfine field becomes dependent on the applied field, a behaviour which is typical for impurity spin compensation. This compensation decreases with Ni concentration.  相似文献   

12.
The magnetic behavior of the FeInxCr2−xSe4 system (with x=0.0, 0.2 and 0.4) has been investigated by magnetic and Mössbauer spectroscopy. Hyperfine parameters indicate that iron is in the Fe2+ oxidation state, with a minor (∼9%) Fe3+ fraction, located at different layers in the structure. Low-field magnetization curves as a function of temperature showed that the antiferromagnetic (AFM) order temperature is TN=208(2) K for FeCr2Se4 and decreases to 174(3) K for FeIn0.4Cr1.6Se4. The effective magnetic moment μeff decreases with increasing In contents, and shows agreement with the expected values from the contribution of Fe2+ (5D) and Cr3+ (4F) electronic states. A second, low-temperature transition is observed at TG∼13 K, which has been assigned to the onset of a glassy state.  相似文献   

13.
The effect of Pr-doping on structural, electronic transport, magnetic properties in perovskite molybdates Sr1−xPrxMoO3 (0≤x≤0.15) has been investigated. The Pr-doping at Sr-site does not change the space group of the samples, but decreases the lattice parameter a. The magnitude of resistivity ρ increases initially (x≤0.08) and then decreases with further increasing Pr-doping level x and ρ(T) behaves as T2 and T dependence in the low-temperature range blow T* and high-temperature range of 150 K<T<350 K, related to the electron-electron (e-e) and electron-phonon (e-ph) scattering, respectively. The magnetic susceptibility χ value of the sample increases with increasing x and the χ(T) curve for all samples can be well described by the model of exchange-enhanced paramagnetism. The specific heat magnitude in the low-temperature region increases with increasing Pr-doping level. The specific heat value agrees with the classical Dulong-Petit phonon specific heat, Ccl=3kBrNA=124.7 J/mol K in the high-temperature region and the temperature dependence of the specific heat can be well described by the formula Cp(T)/T=γe+βpT2 in the low-temperature range. These behaviors can be explained by the competition between the increase in the density of state (DOS) at Fermi energy level and the disorder effect due to Pr-doping.  相似文献   

14.
The magnetic property of double doped manganite Nd0.5(1+x)Ca0.5(1−x)Mn(1−x)CrxO3 with a fixed ratio of Mn3+:Mn4+=1:1 has been investigated. For the undoped sample, it undergoes one transition from charge disordering to charge ordering (CO) associated with paramagnetic (PM)-antiferromagnetic (AFM) phase transition at T<250 K. The long range AFM ordering seems to form at 35 K, rather than previously reported 150 K. At low temperature, an asymmetrical M-H hysteresis loop occurs due to weak AFM coupling. For the doped samples, the substitution of Cr3+ for Mn3+ ions causes the increase of magnetization and the rise of Tc. As the Cr3+ concentration increases, the CO domain gradually becomes smaller and the CO melting process emerges. At low temperature, the FM superexchange interaction between Mn3+ and Cr3+ ions causes a magnetic upturn, namely, the second FM phase transition.  相似文献   

15.
The full temperature dependence of the electric field gradient tensor at the Na sites has been determined by nuclear magnetic resonance (NMR) in the temperature range 8–330 K in α-Nax 2O5 (x = 0.996). Above the spin-Peierls transition (T c = 34.7 K), only a single Na site is observed in agreement with the Pmmn space group proposed to describe this compound as the first example of a 1/4-filled ladder system. Below Tc, eight distinct quadrupolar23Na sites are observed according to the distortion wave vector kc = (1/2, 1/2, 1/4) previously reported. In addition, the opening of a spin gap is evidenced by a rapid drop of the magnetic hyperfine shift23K at Tc. The results are discussed in the context of a charge-order-driven spin-Peierls transition.  相似文献   

16.
Antiferromagnetic ErAgSn compound was investigated in detail by 119Sn Mössbauer spectroscopy in a temperature range between 2.2 and 300 K. The 119Sn spectra recorded below 4.2 K can be well fitted with a single main magnetic component in agreement with recent neutron diffraction studies [1]. A broad distribution of magnetic hyperfine fields observed above 4.2 K and enhanced spin correlations among Er3+ ions at T > T N = 5.6 K are the remarkable features of the investigated system.  相似文献   

17.
18.
LiFe1 − xMnxPO4 olivines are promising material for improved performance of Li‐ion batteries. Spin–phonon coupling of LiFe1 − xMnxPO4 (x = 0, 0.3, 0.5) olivines is studied through temperature‐dependent Raman spectroscopy. Among the observed phonon modes, the external mode at ~263 cm−1 is directly correlated with the motions of magnetic Fe2+/Mn2+ ions. This mode displays anomalous temperature‐dependent behavior near the Néel temperature, indicating a coupling of this mode with spin ordering. As Mn doping increases, the anomalous behavior becomes clearly weaker, indicating the spin–phonon coupling quickly decreases. Our analyses show that the quick decrease of spin–phonon coupling is due to decrease of the strength of spin–phonon coupling, but not change of spin‐ordering feature with Mn doping. Importantly, we suggest that the low electrochemical activity of LiMnPO4 is correlated with the weak spin–phonon coupling strength, but not with the weak ferromagnetic ground state. Our work would play an important role as a guide in improving the performances of future Li‐ion batteries. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
La0.8Sr0.2Co1−xFexO3 (x=0.15, 0.2, 0.3) samples were studied by means of AC magnetic susceptibility, magnetization, magnetoresistance and 57Fe Mössbauer spectrometry. Iron was found to take on a high spin 3d5−α electronic state in each of the samples, where α refers to a partly delocalized 3d electron. The compounds were found to exhibit a spin-cluster glass transition with a common transition temperature of ∼53 K. The spin-cluster glass transition is visualized in the 57Fe Mössbauer spectra as the slowing down of magnetic relaxation below ∼70 K, thereby showing that iron takes part in the formation of the glassy magnetic phase. The paramagnetic-like phase found at higher temperatures is identified below Tc≈195 K as being composed of weakly interacting, magnetically ordered nanosized clusters of magnetic ions in part with a magnetic moment oriented opposite to the net magnetic moment of the cluster. For each of the samples a considerable low-temperature negative magnetoresistance was found, whose magnitude in the studied range decreases with increasing iron concentration. The observed results obtained on the present compounds are qualitatively explained assuming that the absolute strengths of magnetic exchange interactions are subject to the relation ∣JCo–Co∣<∣JFe–Co∣<∣JFe–Fe∣.  相似文献   

20.
Magnetic and crystallographic properties have been studied by neutron powder diffraction and measurements of magnetization and magnetization hysteresis-loops for substituted spinels of Zn1?xCuxCr2Se4 with 0.0≤x≤0.3. It is found that the Zn0.85Cu0.15Cr2Se4 spinel has two magnetic phase transitions at 23.0 K (Néel temperature; T N) and 410 K (Curie temperature; T C) and that the Zn0.70Cu0.30Cr2Se4 spinel has magnetic transitions at 24.5 K (T N) and 415 K (T C) on heating. The low-temperature magnetic phase transition is from a spiral antiferromagnet to a ferromagnet, and the high-temperature magnetic phase transition is from a ferromagnet to a paramagnet, while ZnCr2Se4 shows a magnetic phase transition only from a spiral antiferromagnet to a paramagnet at about 21.0 K. From neutron powder diffraction, it is also found that the spinels of Zn1?x Cu x Cr2Se4; 0.0 ≤ x ≤ 0.3. show satellite-like magnetic reflection having indexes (h ± Q, k, l) with Q = 0.470 below T N and short-range order of spins (spin glass-like) above T N. The incommensurate antiferromagnetic phase below T N results from a spiral long-range order of the spins of Cr3+. The intermediate ferromagnetic phase between T N and T C is related not to the spiral spin order but to double-exchange magnetic interaction among Cr3+ and Cr4+ mediated by current carriers, positive holes, which is made by the substitution of Zn2+ ions with Cu1+ ions in Zn1?x Cu x Cr2Se4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号