共查询到20条相似文献,搜索用时 0 毫秒
1.
The water exchange reaction of [Be(H2O)2(1H‐imidazole‐4,5‐dicarboxylate)] and [Be(H2O)2(1H‐imidazol‐3‐ium‐4,5‐dicarboxylate)]+ in water was studied by DFT calculations (RB3LYP/6‐311+G**) and identified as an associative interchange mechanism. The activation barriers for [Be(H2O)2(1H‐imidazole‐4,5‐dicarboxylate)] (16.6 kcal/mol) and [Be(H2O)2(1H‐imidazol‐3‐ium‐4,5‐dicarboxylate)]+ (13.8 kcal/mol) are similar to the barrier for [Be(H2O)4)]2+ and independent of the overall charge. NICS calculations show no indication that the aromaticity of the imidazole ring is affected during the water exchange process. 相似文献
2.
On the basis of DFT calculations (B3LYP/6‐311+G**), the possibility to include solvent effects is considered in the investigation of the H2O‐exchange mechanism on [Be(H2O)4]2+ within the widely used cluster approach. The smallest system in the gas phase, [Be(H2O)4(H2O)]2+, shows the highest activation barrier of +15.6 kcal/mol, whereas the explicit addition of five H‐bonded H2O molecules in [{Be(H2O)4(H2O)}(H2O)5]2+ reduces the barrier to +13.5 kcal/mol. Single‐point calculations applying CPCM (B3LYP(CPCM:H2O)/6‐311+G**//B3LYP/6‐311+G**) on [Be(H2O)4(H2O)]2+ lower the barrier to +9.6 kcal/mol. Optimization of the precursor and transition state of [Be(H2O)4(H2O)]2+ within an implicit model (B3LYP(CPCM:H2O)/6‐311+G** or B3LYP(PCM:H2O)/6‐311+G**) reduces the activation energy further to +8.3 kcal/mol but does not lead to any local minimum for the precursor and is, therefore, unfavorable. 相似文献
3.
The water exchange reaction of BeII complexes in the series [Be(X)(H2O)3]+ (X = H–, F–, Cl–, Br–, OH–, CN–, NCNCN–) was studied by DFT calculations (RB3LYP/6‐311+G**) and identified as an associative interchange mechanism. The influence of X on the activation energies was examined and found to be largely negligible, thus making them all act as spectator ligands. The energies for addition of a fourth water molecule, representing the second coordination sphere, were approximately half of that found for similar dicationic complexes and close to that found for monocationic species like [Li(H2O)4]+. 相似文献
4.
Basam M. Alzoubi Dr. Ralph Puchta Dr. Rudi van Eldik Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2010,16(24):7300-7308
The water‐exchange mechanisms of [Zn(H2O)4(L)]2+?2 H2O (L=imidazole, pyrazole, 1,2,4‐triazole, pyridine, 4‐cyanopyridine, 4‐aminopyridine, 2‐azaphosphole, 2‐azafuran, 2‐azathiophene, and 2‐azaselenophene) have been investigated by DFT calculations (RB3LYP/6‐311+G**). The results support limiting associative reaction pathways that involve the formation of six‐coordinate intermediates [Zn(H2O)5(L)]2+?H2O. The basicity of the coordinated heterocyclic ligands shows a good correlation with the activation barriers, structural parameters, and stability of the transition and intermediate states. 相似文献
5.
The mechanisms for hydrogen cyanide exchange on [Zn(HCN)6]2+ were studied using density functional theory (B3LYP/6‐311+G**), and showed that the limiting dissociative (D) pathway is more favorable than the associative interchange (Ia) mechanism. The activation barrier for the dissociative mechanism (7 kcal · mol–1) is clearly lower than for the interchange mechanism (15.9 kcal · mol–1). 相似文献
6.
Bis(tetraphenylphosphonium)‐tris(μ‐hydroxo)hexaaquatriberylliumpentachloride, (Ph4P)2[Be3(μ‐OH)3(H2O)6]Cl5 ( 1 ), was surprisingly obtained by reaction of (Ph4P)N3 · n H2O with BeCl2 in dichloromethane suspension and subsequent crystallization from acetonitrile to give single crystals of composition 1· 5.25CH3CN. According to the crystal structure determination space group P , Z = 2, lattice dimensions at 100 K: a = 1354.8(2), b = 1708.7(2), c = 1753.2(2) pm, α = 114.28(1)°, β = 94.80(1)°, γ = 104.51(1)°, R1 = 0.0586] the [Be3(μ‐OH)3(H2O)6]3+ cations form six‐mem‐bered Be3O3 rings with boat conformation and distorted tetrahedrally coordinated beryllium atoms with the terminally coordinated H2O molecules. The structure ist characterized by a complicated three dimensional hydrogen‐bridging network including O–H ··· O, O–H ··· Cl, and O–H ··· NCCH3 contacts. DFT calculations result in nearly planar [Be3(OH)3] six‐membered ring conformations. 相似文献
7.
Dimethylsulfoxide Complexes of Beryllium(II) Chloride. Crystal Structures of [Be(OSMe2)4]Cl2, [Be(OSMe2)3(H2O)]Cl2 and [Be(OSMe2)2(H2O)2]Cl2 Single crystals of the mixed ligand complexes [Be(OSMe2)3(H2O)]Cl2 ( 2 ) and [Be(OSMe2)2(H2O)2]Cl2 ( 3 ) were obtained from saturated solutions of [Be(OSMe2)4]Cl2 ( 1 ) in acetonitrile and dichloromethane, respectively, in the presence of traces of water, while single crystals of 1 were available by reaction of the carbodiphosphorane complex [BeCl2{C(PPh3)2}] with DMSO/toluene solution. All complexes are characterized by X‐ray diffraction and IR spectroscopy. 1 : Space group Pbca, Z = 8, lattice dimensions at 193 K: a = 962.4(1), b = 1888.8(2), c = 2115.8(2) pm, R1 = 0.0344. 1 consists of [Be(OSMe2)4]2+ cations with distorted tetrahedral coordination of the oxygen atoms of the DMSO molecules with Be–O distances of 161.9 pm on average, and chloride ions. 2 : Space group , Z = 2, lattice dimensions at 193 K: a = 903.9(2), b = 925.2(3), c = 1121.3(3) pm, α = 93.65(3)°, β = 108.03(3)°, γ = 115.20(3)°, R1 = 0.0472. 3 : Space group , Z = 2, lattice dimensions at 173 K: a = 788.2(2), b = 801.6(2), c = 1070.7(3) pm, α = 86.66(2)°, β = 83.80(2)°, γ = 71.00(2)°, R1 = 0.0699. 2 and 3 also form dications with distorted tetrahedral coordination of the Be2+ ions by the oxygen atoms of DMSO and water molecules, respectively. The chloride ions are associated by strong hydrogen bonds O–H···Cl to give three‐dimensional networks. 相似文献
8.
Ewa Pasgreta Ralph Puchta Michael Galle Nico van Eikema Hommes Achim Zahl Rudi van Eldik 《Journal of inclusion phenomena and macrocyclic chemistry》2007,58(1-2):81-88
Kinetic studies on Li+ exchange between the cryptands C222 and C221, and γ-butyrolactone as solvent were performed as a function of ligand-to-metal
ratio, temperature and pressure using 7Li NMR. The thermal rate and activation parameters are: C222: k
298 = (3.3 ± 0.8)×104 M−1 s−1, ΔH
# = 35 ± 1 kJ mol−1 and ΔS
# = −41 ± 3 J K−1 mol−1; C221: k
298 = 105 ± 32 M−1 s−1, ΔH
# = 48 ± 1 kJ mol−1 and ΔS
# = −45 ± 2 J K−1 mol−1. Temperature and pressure dependence measurements were performed in the presence of an excess of Li+. The influence of pressure on the exchange rate is insignificant for both ligands, such that the value of activation volume
is around zero within the experimental error limits. The activation parameters obtained in this study indicate that the exchange
of Li+ between solvated and chelated Li+ ions follows an associative interchange mechanism.
Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .
For Part I see: R. Puchta, M. Galle, N.J.R. van Hommes, E. Pasgreta and R. van Eldik: Inorg. Chem.
43, 8227 (2004). 相似文献
9.
Ralf Tonner Gernot Frenking Prof. Dr. Bernhard Neumüller Kurt Dehnicke Prof. Dr. 《无机化学与普通化学杂志》2007,633(8):1183-1188
(Ph4P)2[Be2F6]·2CH3CN: Synthesis, IR Spectra, Crystal Structure, and Quantum Chemical Calculations The hexafluorodiberyllate (Ph4P)2[Be2F6]·2CH3CN ( 1 ) was prepared by the reaction of (Ph4P)2[Be2Cl6] with excess silver(I) fluoride in acetonitrile solution. According to the IR spectra and to the X‐ray crystal structure determination, 1 contains isolated [Be2F6]2? ions of symmetry Ci, which is very close to symmetry D2h. 1 crystallizes triclinically in space group with one formula unit per unit cell. Lattice dimensions at 193 K: a = 950.5(2), b = 1016.1(2), c = 1305.2(2) pm, α = 101.04(2)°, β = 110.83(2)°, γ = 96.85(2)°, R1 = 0.0354. DFT (BP86) and ab initio (CCSD(T)) calculations with large basis sets provide the picture of an intrinsically unstable molecule stabilized by solvent and solid state effects. 相似文献
10.
[Fe2(μsb‐CO)(CO)3(NO)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)]: Synthesis, X‐ray Crystal Structure and Isomerization Na[Fe2(μ‐CO)(CO)6(μ‐PtBu2)] ( 1 ) reacts with [NO][BF4] at —60 °C in THF to the nitrosyl complex [Fe2(CO)6(NO)(μ‐PtBu2)] ( 2 ). The subsequent reaction of 2 with phosphanes (L) under mild conditions affords the complexes [Fe2(CO)5(NO)L(μ‐PtBu2)], L = PPh3, ( 3a ); η‐dppm (dppm = Ph2PCH2PPh2), ( 3b ). In this case the phosphane substitutes one carbonyl ligand at the iron tetracarbonyl fragment in 2 , which was confirmed by the X‐ray crystal structure analysis of 3a . In solution 3b loses one CO ligand very easily to give dppm as bridging ligand on the Fe‐Fe bond. The thus formed compound [Fe2(CO)4(NO)(μ‐PtBu2)(μ‐dppm)] ( 4 ) occurs in solution in different solvents and over a wide temperature range as a mixture of the two isomers [Fe2(μsb‐CO)(CO)3(NO)(μ‐PtBu2)(μ‐dppm)] ( 4a ) and [Fe2(CO)4(μ‐NO)(μ‐PtBu2)(μ‐dppm)] ( 4b ). 4a was unambiguously characterized by single‐crystal X‐ray structure analysis while 4b was confirmed both by NMR investigations in solution as well as by means of DFT calculations. Furthermore, the spontaneous reaction of [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 5 ) with NO at —60 °C in toluene yields a complicated mixture of products containing [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 6 ) as main product beside the isomers 4a and 4b occuring in very low yields. 相似文献
11.
12.
Synthesis and Crystal Structure of the Azido Beryllate (Ph4P)2[Be(μ‐OSiMe3)(N3)2]2 (Ph4P)2[Be2F6] reacts with excess trimethylsilylazide in acetonitrile solution, accompanied by a hydrolytic side‐reaction to give the azido beryllate (Ph4P)2[Be(μ‐OSiMe3)(N3)2]2 ( 1 ) as colourless, non‐explosive crystals. 1 was characterized by IR spectroscopy and by single crystal X‐ray determination. 1 : Space group , Z = 1, lattice dimensions at 193 K: a = 1026.9(1), b = 1184.0(1), c = 1352.1(1) pm, α = 73.50(1)°, β = 74.35(1)°, γ = 64.66(1)°, R1 = 0.0543. The complex anion of 1 forms centrosymmetric units with symmetry Ci via Be2O2 four‐membered rings with Be–O distances of 159.2(7) and 168.7(7) pm, and terminally bonded azide groups. 相似文献
13.
Phosphanimine and Phosphoraneiminato Complexes of Beryllium. Crystal Structures of [BeCl2(HNPPh3)2], [BeCl(HNPPh3)2(Py)]Cl, and [Be3Cl2(NPPh3)4] Tetraphenylphosphonium hexachlorodiberyllate, (Ph4P)2[Be2Cl6], reacts with lithium phosphoraneiminate, [LiNPPh3]6, in dichloromethane to give the three‐nuclear beryllium phosphoraneiminate [Be3Cl2(NPPh3)4] ( 3 ). As a by‐product the phosphaneimine complex [BeCl2(HNPPh3)2] ( 1 ) can be isolated, which reacts with pyridine to give the ionic complex [BeCl(HNPPh3)2(Py)]Cl ( 2 ). On the other hand, the silylated phosphanimine Me3SiNP(p‐tolyl)3 ( 5 ) does not react with BeCl2 or (Ph4P)2[Be2Cl6] forming the expected phosphoraneiminates. From CH2Cl2 solutions only the amino‐phosphonium salt [(C7H7)3PNH2]Cl ( 4 ) can be obtained. The compounds 1 ‐ 5 are characterized by single X‐ray analyses and by IR spectroscopy. 1 ·C7H8: Space group C2/c, Z = 4, lattice dimensions at 193 K: a = 1408.9(2), b = 1750.9(2), c = 1633.2(2) pm, β = 106.50(1)°; R1 = 0.0385. 1 forms a molecular structure with short Be—N distances of 169.8(3) pm. 2 ·Py: Space group P1¯, Z = 4, lattice dimensions at 193 K: a = 969.5(1), b = 2077.1(2), c = 2266.4(2) pm, α = 72.24(1)°, β = 87.16(1)°, γ = 77.42(2)°, R1 = 0.0776. 2 forms ion pairs in which the NH atoms of the phosphaneimine ligands act as hydrogen bridges with the chloride ion. The HNPPh3 ligand realizes short Be—N bonds of 169.0(6) pm, the Be—N distance of the pyridine molecule is 182.5(6) pm. 3 ·3CH2Cl2: Space group P1¯, Z = 2, lattice dimensions at 193 K: a = 1333.2(2), b = 1370.2(2), c = 2151.8(3) pm, α = 107.14(1)°, β = 91.39(1)°, γ = 105.15(1)°, R1 = 0.0917. The structure of the three‐nuclear molecule 3 corresponds with a Be2+ ion which is tetrahedrally coordinated by the nitrogen atoms of two {ClBe(NPPh3)2}— chelates. 4 ·CH2Cl2: Space group P21/c, Z = 4, lattice dimensions at 193 K: a = 1206.6(2), b = 1798.0(2), c = 1096.2(1) pm, β = 97.65(1)°, R1 = 0.0535. 4 forms dimeric units in which the NH2 groups of the [(C7H7)3PNH2]+ cations act as hydrogen bridges with the chloride ions to give centrosymmetric eight‐membered rings. 5 : Space group P21/n, Z = 4, lattice dimensions at 193 K: a = 1074.3(2), b = 2132.2(3), c = 1075.5(2) pm, β = 110.68(1)°, R1 = 0.0664. 5 forms molecules with distances PN of 154.6(3), SiN of 168.8(3) pm, and bond angle SiNP of 134.4(2)°. 相似文献
14.
Suitable single crystals for X‐ray analysis of the recently published azido beryllate (Ph4P)2[Be4Cl4(μ‐N3)6] ( 1 ) [1] were obtained by a modified synthetic route, and the crystal structure of 1 was determined. The compound crystallizes isotypically with the corresponding bromo derivative [1] in the space group C2/c with 12 formula units per unit cell. Lattice dimensions at 193 K: a = 4125.5(1), b = 2001.7(1), c = 2050.4(1) pm, β = 101.05 (1)°, R1 = 0.0359. The structure contains adamantanlike dianions [Be4Cl4(μ‐N3)6]2? with a Be4N6 core forming by the bridging function of the α‐nitrogen atoms of the azido groups. 相似文献
15.
Single crystals of [Be3(μ3‐O)3(MeCN)6{Be(MeCN)3}3](I)6·4CH3CN ( 1 ·4CH3CN) were obtained in low yield by the reaction of beryllium powder with iodine in acetonitrile suspension, which probably result from traces of beryllium oxide containing the applied beryllium metal. The compound 1 ·4CH3CN forms moisture sensitive, colourless crystal needles, which were characterized by IR spectroscopy and X‐ray diffraction (Space group Pnma, Z = 4, lattice dimensions at 100(2) K: a = 2317.4(1), b = 2491.4(1), c = 1190.6(1) pm, R1 = 0.0315). The hexaiodide complex cation 1 6+consists of a cyclo‐Be3O3 core with slightly distorted chair conformation, stabilized by coordination of two acetonitrile ligands at each of the beryllium atoms and by a {Be(CH3CN)3}2+ cation at each of the oxygen atoms. This unique coordination behaviour results in coplanar OBe3 units with short Be–O distances of 155.0 pm and 153.6 pm on average of bond lengths within the cyclo‐Be3O3 unit and of the peripheric BeO bonds, respectively. Exposure of compound 1 ·4CH3CN to moist air leads to small orange crystal plates of [Be(H2O)4]I2·2CH3CN ( 3 ·2CH3CN). According to the crystal structure determination (Space group C2/c, Z = 4, lattice dimensions at 100(2) K: a = 1220.7(1), b = 735.0(1), c = 1608.5(1) pm, β = 97.97(1)°, R1 = 0.0394), all hydrogen atoms of the dication [Be(H2O)4]2+ are involved to form O–H ··· N and O–H ··· I hydrogen bonds with the acetonitrile molecules and the iodide ions, respectively. Quantum chemical calculations (B3LYP/6‐311+G**) at the model [Be3(μ3‐O)3(HCN)6{Be(HCN)3}3]6+ show that chair and boat conformation are stable and that the distorted chair conformation is stabilized by packing effects. 相似文献
16.
[Be(OH2)4]Cl2 – Preparation, IR spectrum, and Crystal Structure Single crystals of [Be(OH2)4]Cl2 were prepared by the reaction of thionyl chloride at 20 °C with samples which result from evaporated, HCl containing, aqueous solutions of BeCl2. With excess of boiling thionyl chloride BeCl2 is formed. [Be(OH2)4]Cl2 is characterized by IR spectroscopy and by X‐ray crystal structure determination: Space group P21/c, Z = 4, lattice dimensions at 193 K: a = 653.53(5), b = 1298.15(14), c = 789.52(6) pm, β = 103.005(9)°, R1 = 0.027. The structure consists of slightly distorted tetrahedral [Be(OH2)2]2+ ions, which are connected with the chloride ions via nearly linear O–H···Cl hydrogen bonds to give a 3D network. 相似文献
17.
Crystal Structure of [BeCl2(15‐Crown‐5)] Single crystals of [BeCl2(15‐crown‐5)] ( 1 ) were obtained from dichloromethane solutions of BeCl2 in the presence of the equivalent amount of 15‐crown‐5 and characterized by IR spectroscopy and X‐ray diffraction. Space group P21/c, Z = 4, lattice dimensions at 100 K: a = 1036.2(1), b = 1071.1(1), c = 1360.1(1) pm, β = 109.86(1)°, R1 = 0.0225. The structure determination shows no disorder, all hydrogen positions were refined isotropically. The results are in contrast to the previously reported crystal structure determination in the space group P21nb. The beryllium atom of 1 forms a BeO2C2 five‐membered heterocycle with terminal chlorine atoms to give a distorted tetrahedral coordination with distances Be–O 166.5(2), 169.9(2) pm, and Be–Cl 195.8(2), 197.8(2) pm. The structural results are in good agreement with DFT calculations on B3LYP/6‐311+G** level. 相似文献
18.
Treatment of [p‐tBu‐calix[4](OMe)2(OLi)2] with two equivalents of BeCl2 gave the unprecedented dinuclear beryllium complex [p‐p‐tBu‐calix[4](OMe)2(OBeCl)2], which was structurally characterized, both in solution (NMR) and in the solid state (X‐ray structure analysis). 相似文献
19.
On Reactions of Hexachlorodiberyllate with Trimethylsilyl‐N‐dimethylamide. Crystal Structures of (Ph4P)3[Be2Cl5(OSiMe3)][BeCl3(Me2NSiMe3)], (Ph4P)[BeCl3(HNMe2)], and (Ph4P)(H2NMe2)[BeCl4] Reactions of bis‐tetraphenylphosphonium hexachlorodiberyllate, (Ph4P)2[Be2Cl6], with trimethylsilyl‐N‐dimethylamide under different conditions lead to the novel chloroberyllate derivatives (Ph4P)3[Be2Cl5(OSiMe3)][BeCl3(Me2NSiMe3)] ( 1 ), (Ph4P)[BeCl3(HNMe2)] ( 2 ), and (Ph4P)(H2NMe2)[BeCl4] ( 3 ). 1 ‐ 3 were characterized by IR spectroscopy and crystal structure determinations. 1· 4CH2Cl2: Space group P1¯, Z = 2, lattice dimensions at 193 K: a = 1115.6(1), b = 2110.7(2), c = 2145.0(3) pm, α = 71.38(1)°, β = 85.66(1)°, γ = 85.24(1)°, R1 = 0.0732. The [Be2Cl5(OSiMe3)]2— ion in the structure of 1 is derived from the [Be2Cl6]2— ion by substitution of a μ‐Cl ligand by the oxygen atom of the (OSiMe3)— group. The second anion, [BeCl3(Me2NSiMe3)]—, can be described as donor acceptor complex with a short Be—N bond of 179(1) pm. 2 : Space group P1¯, Z = 2, lattice dimensions at 193 K: a = 1063.1(1), b = 1072.0(1), c = 1238.3(1) pm, α = 87.55(1)°, β = 74.86(1)°, γ = 69.73(1)°, R1 = 0.0299. The anion of 2 forms a centrosymmetric dimer [BeCl3(HNMe2)]22— via N—H···Cl bridges of the two donor acceptor complex units with Be—N separations of 175.2(2) pm. 3 : Space group Pbca, Z = 8, lattice dimensions at 193 K: a = 926.9(1), b = 2164.7(1), c = 2732.7(1) pm, R1 = 0.0495. The structure of 3 contains centrosymmetric ion quadrupoles [(Me2NH2)(BeCl4)]22— forming by N—H···Cl bridges between (Me2NH2)+ and [BeCl4]2— ions. 相似文献
20.
Bis(tetraphenylphosphonium) hexachloridodiberyllate, (Ph4P)2[Be2Cl6], reacts with excess trimethylsilyl‐iso‐thiocyanate to give a mixture of colourless single crystals of (Ph4P)2[Be(NCS)4] ( 1 ) and (Ph4P)4[{Be2(NCS)4(μ‐NCS)2}{Be2(NCS)6(μ‐H2N2C2S2)}] ( 2 ), which can be separated by selection. Both complexes were characterized by X‐ray diffraction. Compound 1 can be prepared without by‐products by treatment of (Ph4P)2[BeCl4] with excess Me3SiNCS in dichloromethane solution. 1 : Space group I41/a, Z = 4, lattice dimensions at 100(2) K: a = b = 1091.2(1), c = 3937.1(3) pm, R1 = 0.0474. The [Be(NCS)4]2– ion of 1 forms tetragonally distorted tetrahedral anions with Be–N distances of 168.4(2) pm and weak intermolecular S ··· S contacts along [100] and [010]. 2 ·4CH2Cl2: Space group P , Z = 1, lattice dimensions at 100(2) K: a = 919.5(1), b = 1248.3(1), c = 2707.0(2) pm, α = 101.61(1) °, β = 95.08(1) °, γ = 94.52(1) °, R1 = 0.103. Compound 2 contains two different anionic complexes in the ratio 1:1. In {Be2(NCS)4(μ‐NCS)2}2–, the beryllium atoms are connected by (NCS)– bridging groups forming centrosymmetric eight‐membered Be2(NCS)2 rings with distances Be–N of 168(1) pm and Be–S of 235.2(9) pm. The second anion {Be2(NCS)6(μ‐H2N2C2S2)}2– consists of two {Be(NCS)3}– units, which are linked by the nitrogen atoms of the unique dimeric cyclo‐addition product of HNCS with Be–N distances of 179(1) pm. 相似文献