共查询到20条相似文献,搜索用时 0 毫秒
1.
Moriyuki Sato Yoichi Matsuoka Isao Yamaguchi 《Journal of polymer science. Part A, Polymer chemistry》2007,45(14):2998-3008
New thermotropic liquid crystalline (LC) hyperbranched (HB) polyesters containing 2,5‐diphenyl‐1,3,4‐thiadiazole (DTD) unit as mesogen in the interiors were prepared at various mole ratios (A2/B3) by melt and solution polycondensations of a dioxydiundecanol of DTD (A2) and 1,2,3‐propanetricarboxylic acid (B3) via the A2 + B3 approach and their LC and optical properties were investigated. FTIR and 1H‐NMR spectroscopies indicated that all the expected HB polyesters, which show good solubilities in organic solvents, are produced without gelation during the polymerization. Among them, the HB polymer prepared in the mole ratio of A2/B3 = 3/2 by the solution polycondensation had the highest inherent viscositiy. DSC measurents, polarizing microscope observations of optical textures, and X‐ray analyses suggested that the LC properties of HB polymers depend on the polymerization methods and the feed mole ratios. In the HB polymers prepared using the melt polycondensation, only the polymer prepared in the mole ratio of A2/B3 = 3/1 formed a highly‐ordered, tilted, crystal‐like smectic phase, but all the polymers prepared by the solution polycondensation formed highly‐ordered, tilted, smectic phases. Solution and solid‐state UV‐vis and photoluminescent (PL) spectra indicated that the HB polymers show maximum absorbances and blue‐light emission on the basis of the DTD unit, where the Stokes‐shifts were observed, probably because of intermolecular aggregation effects © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2998–3008, 2007 相似文献
2.
Photoactive hyperbranched benzylidene liquid‐crystalline polyester (PAHBP) and photoactive linear benzylidene liquid‐crystalline polyester (PALBP) were synthesized by solution polycondensation with pyridine as an acid acceptor. PAHBP and PALBP were thoroughly characterized with Fourier transform infrared, 1H and 13C NMR, ultraviolet–visible spectrophotometry, fluorescent spectrophotometry, gel permeation chromatography, thermogravimetric analysis, differential scanning calorimetry, and polarized optical microscopy. Both polymers exhibited nematic mesophase. The glass‐transition temperature and liquid‐crystalline isotropic temperature of PAHBP were higher than those of PALBP. During photolysis under ultraviolet light, both polymers underwent an intermolecular photocycloaddition reaction, and the photoactivity of PAHBP was faster than that of PALBP; this was further confirmed by photoviscosity studies. PALBP and PAHBP were fluorescent in nature. An increase in the fluorescence intensity with the time of ultraviolet‐light irradiation was observed for both PAHBP and PALBP. The rate of increase in the fluorescence intensity of the linear analogue (PALBP) was higher than that of the hyperbranched polymer (PAHBP). This behavior could be attributed to the attainment of better planarity in the case of the linear one but not in the case of PAHBP because of the rapid crosslinking of PAHBP leading to an irregular architecture. This behavior was further confirmed by the calculation of the steric energy from corresponding model compounds. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3986–3994, 2006 相似文献
3.
V. Srinivasa Rao A. B. Samui 《Journal of polymer science. Part A, Polymer chemistry》2011,49(6):1319-1330
A series of linear and hyperbranched polyester epoxies, with varied structural parameters such as kinked structure and different dendritic architectures, were synthesized by A2 + B2, A2 + B3, A3 + B2, and A3 + B3 approaches. The structures of synthesized monomers and polymers were confirmed by Fourier transform infrared, 1H NMR, and 13C NMR spectroscopic techniques. The effect of varied structural parameters on phase behavior and photoresponsive properties was investigated by using differential scanning calorimeter, thermal optical polarized microscope, UV–visible spectroscopy, photoviscosity, and refractive index studies. The transition temperatures of hyperbranched polymers were higher than that of the corresponding linear analogues. All the polymers showed nematic phase (nematic droplets) over a broad temperature range. The effect of kinked structural unit on photoresponsive property is less in both linear and hyperbranched architectures. Although the effect of architectural nature is highly considerable within the hyperbranched architectures, the polymer (HPE–33) synthesized by A3 + B3 approach showed highest rate of photocrosslinking, followed by HPE–I 32; HPE–T 32, and HPE–23, which were synthesized by A3 + B2 and A2 + B3 approaches, respectively. The findings in photoresponsive properties were further supported by molecular modeling studies. Substantial variation of refractive index (0.015–0.024) indicates that these polymers could be used for optical recording. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
4.
Rosa M. Tejedor Luis Oriol Milagros Piol Jos Luis Serrano Veronika Strehmel Burkhard Stiller Joachim Stumpe 《Journal of polymer science. Part A, Polymer chemistry》2005,43(20):4907-4921
Three series of semiflexible and rigid main‐chain polyesters containing photoreactive mesogenic units derived from p‐phenylenediacrylic acid (PDA) and cinnamic acid have been synthesized by high‐temperature polycondensation. The thermal and mesomorphic properties of the polymers have been determined. The photochemical behavior of polymer P‐[1]‐T, which contains a PDA unit, has been studied both in solution and in films. In solution, [2+2] photocycloaddition, E/Z photoisomerization, and photo‐Fries rearrangement can take place. In contrast, the dominant process in spin‐coated films is the [2+2] photocycloaddition reaction, which causes crosslinking of the polymer. In films, the photochemistry and induction of anisotropy are strongly influenced by the aggregation of the PDA phenylester unit. A dichroism of about 0.2 has been induced in films by irradiation with linearly polarized UV light, and thus the capability of these films to induce optical anisotropy and align liquid crystals has been demonstrated. Liquid‐crystalline cells have been made with polarized irradiated films of P‐[1]‐T as aligning layers. A commercial liquid‐crystalline mixture has been used for this study, and a similar liquid‐crystalline order determined by polarized Fourier transform infrared to a commercial cell with rubbed polyimide as an aligning layer has been detected. Because of crosslinking of the irradiated P‐[1]‐T photoaligning layer, the photoinduced anisotropy is stable at high temperatures, and the liquid‐crystalline molecules are insoluble in the irradiated polymer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4907–4921, 2005 相似文献
5.
A novel photoactive, liquid‐crystalline, hyperbranched benzylidene polyester (PAHBP) was synthesized from a dilute solution of an A2 photoactive monomer [bis(4‐hydroxybenzylidene)‐4‐phenyl cyclohexanone] and a B3 monomer (1,3,5‐benzene tricarboxylic acid chloride) by the solution polycondensation method in the presence of pyridine as a condensing agent. PAHBP was thoroughly characterized by Fourier transform infrared, 1H and 13C NMR, ultraviolet–visible spectrometry, and gel permeation chromatography. The inherent viscosity of the polymer was 0.35 dL/g in tetrahydrofuran. The degree of branching was 0.53, which confirmed the branched architecture of the polymer. Furthermore, thermogravimetric analysis, differential scanning calorimetry, and polarized optical microscopy were used to examine the thermal stability and thermotropic liquid‐crystalline properties of the hyperbranched polyester. The polymer exhibited a nematic mesophase over a wide range of temperatures. The photoreactivity of PAHBP was studied by photolysis under ultraviolet light. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 53–61, 2006 相似文献
6.
7.
Rathinam Balamurugan Palaninathan Kannan 《Journal of polymer science. Part A, Polymer chemistry》2008,46(17):5760-5775
Photoreactive main chain liquid crystalline polyesters containing oxadiazole and bis(benzylidene)cycloalkanone moieties were synthesized and characterized by structural, thermal, mesomorphic, and optical measurements. The bis(benzylidene) cycloalkanone chromophores in the main chain can constitute both as a mesogen and photoreactive center, whereas 1,3,4‐oxadiazole is a well‐known fluorophore. The thermal properties of polymers were found to be inversely proportional not only to the spacer length but also to ring‐size of cycloalkanones. Hot stage polarized optical microscopic investigations displayed enantiotropic nematic liquid crystalline phases and development of grainy to schlieren textures depends on the length of flexible spacer in the polymer backbone which was in accordance with DSC analysis. Both photoisomerization and photodimerization are observed from the absorption spectra and discussed. The fluorescence spectra in solution state at various concentrations showed that the polymers show blue‐emission maxima and the Stokes shifts being 48–49 nm. The energy transfer occurred when increasing the concentration of the solution. The band gap energies calculated from the absorption spectra are in the range of 3.17–3.41 eV. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5760–5775, 2008 相似文献
8.
V. Srinivasa Rao A. B. Samui 《Journal of polymer science. Part A, Polymer chemistry》2009,47(11):2774-2786
Two sets of hyperbranched polyether epoxies were synthesized to study the effect of substituent, rigidity, and nature of photoactive unit on the thermal and photoresponsive properties. Each set was comprised of one molecule with an acyclic moiety in the repeating unit, and two molecules with a cyclic moiety of varying rigidity (cycle size) in the repeating unit. Two substituents on aromatic rings in the repeating unit were present in one set, and other set was without a substituent. The mesogenic and photoresponsive properties were studied and correlated to the varied structural parameters. The effects of varied molecular structural parameters on phase behavior and photoresponsive properties were very prominent. Out of six monomeric diols, only four have exhibited liquid crystalline phase while the polymers corresponding to all monomeric diols revealed mesophase. The findings in photoresponsive properties were further supported by molecular modeling studies. The changes in refractive index, photoviscosity, and fluorescence intensity with irradiation time substantiated the spectral pattern observed in UV‐Vis spectroscopy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2774–2786, 2009 相似文献
9.
Hongliang Wu Lanying Zhang Yingrong Xu Ziyue Ma Zhihao Shen Xinghe Fan Qifeng Zhou 《Journal of polymer science. Part A, Polymer chemistry》2012,50(9):1792-1800
We synthesized a series of amphiphilic mesogen‐jacketed liquid crystalline (LC) polymers with a biphenyl side‐chain mesogen containing a carboxylic acid group on one side and an octyloxy group on the other, and the number of methylene units between the biphenyl core and the exterior carboxylic acid group was varied to adjust the mesophases and the amphiphilic nature. The polymers were obtained through conventional radical polymerizations and characterized by a combination of different techniques such as thermogravimetric analysis, differential scanning calorimetry, polarized light microscopy, and X‐ray scattering. The results revealed that the polymer without any methylene spacer, POBP‐0C, did not exhibit LC properties while POBP‐1C (n = 1) and POBP‐7C (n = 7) formed double layer smectic A (SA) phases. The hydrogen bonding among the carboxylic acid groups and the segregation between the carboxylic acid groups and the alky chains played important roles in forming the mesophases. In addition, the solution self‐assembly behaviors were also preliminarily investigated through the fluorescent probe technique and transmission electron microscopy, and vesicles with uniform sizes were observed. The weak hydrophilicity and large degree of freedom of the carboxylic acid group and the relative rigidity of the polymer chain due to the “jacketing” effect were responsible for the formation of the structures. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
10.
Someshwarnath Pandey Sarada P. Mishra Balakrishna Kolli Tapan Kanai Asit B. Samui 《Journal of polymer science. Part A, Polymer chemistry》2012,50(13):2659-2668
Three new types of hyperbranched photoactive liquid crystalline siloxane polymers containing azo moieties were synthesized using click chemistry methodology. The polymers were soluble in most of the polar solvents like chloroform, tetrahydrofuran, dimethylformamide, dimethyl sulphoxide and dichloromethane. The molecular weights of the polymers were in the range of 9000–12,000 g mol?1. The trans‐cis photoisomerization of the polymer were studied both under UV radiation and dark. The isomerization rate constants were found to be in the range of 0.7–1.4 × 10?2 sec?1 and 7.0 × ?2.5 × 10?5 sec?1. The thermotropic behavior of the polymers was studied by using polarizing optical microscopy and differential scanning calorimetry, respectively. The polymers P1 and P2 showed liquid crystalline texture characteristic of nematic phase. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
11.
Changmin Xing Jacky W. Y. Lam Keqing Zhao Ben Zhong Tang 《Journal of polymer science. Part A, Polymer chemistry》2008,46(9):2960-2974
Triphenylene‐containing 1‐decynes with different alkyl chain lengths and their polymers are synthesized and the effects of the structural variables on their mesomorphic properties are investigated. The monomers [HC?C(CH2)8CO2C18H6 (OCmH2m+1)5; m = 4–9] are prepared by consecutive etherization, coupling, and esterification reactions. The monomers form columnar phases at room temperature. The polymerizations of the monomers are effected by [Rh(nbd)Cl]2, producing soluble polymers in high yields (up to 84%). The structures and properties of the polymers are characterized and evaluated by IR, NMR, TGA, DSC, POM, and XRD analyses. All the polymers are thermally stable, losing little of their weights when heated to 300 °C. The isotropization temperature of the polymers increases initially with the length of alkyl chain but decreases on further extension. Although the polymers with shorter and longer alkyl chain lengths adopt a homogeneous hexagonal columnar structure, those with intermediate ones form mesophases with mixed structures. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2960–2974, 2008 相似文献
12.
Zhen Lin Zhang Lan Ying Zhang Zhi Hao Shen Guang Zhong Xing Xing He Fan Qi Feng Zhou 《Journal of polymer science. Part A, Polymer chemistry》2010,48(21):4627-4639
On the basis of the concept of mesogen‐jacketed liquid crystalline polymers, a series of new methacrylate monomers, (2,5‐bis[2‐(4′‐alkoxyphenyl) ethynyl] benzyl methacrylate (MACn, n = 4, 6, 8, 10, and 12) and 2,5‐bis[2‐(6′‐decanoxynaphthyl) ethynyl] benzyl methacrylate (MANC10), and their polymers, PMACn (n = 4, 6, 8, 10, and 12) and PMANC10 were synthesized. The bistolane mesogen with large π‐electron conjugation were side‐attached to the polymer backbone via short linkages. Various characterization techniques such as differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized light microscopy were used to study their mesomorphic phase behavior. The polymer PMACn with shorter flexible substituents (n = 4) forms the columnar nematic (?N) phase, but other polymers with longer flexible tails (n = 6, 8, 10, and 12) can develop into a smetic A (SA) phase instead of a ?N phase. The PMANC10 containing naphthyl can also form a well‐defined SA phase. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010 相似文献
13.
In‐Joon Byun Minjae Lee Yang‐Kyoo Han 《Journal of polymer science. Part A, Polymer chemistry》2016,54(12):1713-1723
We report novel liquid crystalline (LC) polymers containing pendant azobenzene moieties with n‐dodecyl substituents and ethyleneoxy spacers of different lengths and describe their selective detection behaviors to alkali metal ions. The new azopolymers produce homogenous smectic phases with a typical fan‐shaped texture. UV‐Vis and 1H NMR studies confirm that the azopolymers selectively bind to Li+ and Na+, but do not complex with K+, Ba2+, Mg2+, or Ca2+. Both the ethyleneoxy spacer and azobenzene units participate in binding to Li+ and Na+ cations in solution. Interestingly, after formation of the complexed structure, the ratio of cis to trans conformer is considerably increased suggesting stronger interactions of the cis conformer with alkali metal ions. Irradiation of the complexed structure with 365 nm UV induces conversion of the uncomplexed trans to the cis. These findings suggest a great potential of the LC azopolymers as selective sensors or separation membranes for alkali metal ions. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1713–1723 相似文献
14.
Pradip K. Bhowmik Xiaobin Wang Haesook Han 《Journal of polymer science. Part A, Polymer chemistry》2003,41(9):1282-1295
A series of main‐chain, thermotropic, liquid‐crystalline (LC), hydrogen‐bonded polymers or self‐assembled structures based on 4,4′‐bipyridyl as a hydrogen‐bond acceptor and aliphatic dicarboxylic acids, such as adipic and sebacic acids, as hydrogen‐bond donors were prepared by a slow evaporation technique from a pyridine solution and were characterized for their thermotropic, LC properties with a number of experimental techniques. The homopolymer of 4,4′‐bipyridyl with adipic acid exhibited high‐order and low‐order smectic phases, and that with sebacic acid exhibited only a high‐order smectic phase. Like the homopolymer with adipic acid, the two copolymers of 4,4′‐bipyridyl with adipic and sebacic acids (75/25 and 25/75) also exhibited two types of smectic phases. In contrast, the copolymer of 4,4′‐bipyridyl with adipic and sebacic acids (50/50), like the homopolymer with sebacic acid, exhibited only one high‐order smectic phase. Each of them, including the copolymers, had a broad temperature range of LC phases (36–51 °C). The effect of copolymerization for these hydrogen‐bonded polymers on the thermotropic properties was examined. Generally, copolymerization increased the temperature range of LC phases for these polymers, as expected, with a larger decrease in the crystal‐to‐LC transition than in the LC‐to‐isotropic transition. Additionally, it neither suppressed the formation of smectic phases nor promoted the formation of a nematic phase in these hydrogen‐bonded polymers, as usually observed in many thermotropic LC polymers. The thermal transitions for all of them, measured by differential scanning calorimetry, were well below their decomposition temperatures, as measured by thermogravimetric analysis, which were in the temperature range of 193–210 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1282–1295, 2003 相似文献
15.
J. M. Montorns J. A. Reina J. C. Ronda 《Journal of polymer science. Part A, Polymer chemistry》2004,42(12):3002-3012
A set of poly[ω‐(4′‐cyano‐4‐biphenyloxy)alkyl‐1‐glycidylether]s were synthesized by the chemical modification of the corresponding poly(ω‐bromoalkyl‐1‐glycidylether)s with the sodium salt of 4‐cyano‐4′‐hydroxybiphenyl. New high‐molecular‐weight side‐chain liquid‐crystalline polymers were obtained with excellent yield and almost quantitative degree of modification. All side‐chain liquid‐crystalline polymers were rubbers soluble in tetrahydrofuran. The characterization by 1H and 13C NMR revealed no changes in the regioregular isotactic microstructure of the starting polymer and the absence of undesirable side reactions such as deshydrobromination. The liquid crystalline behavior was analyzed by DSC and polarized optical microscopy, and mesophase assignments were confirmed by X‐ray diffraction. Polymers that had alkyl spacers with n = 2 and 4 were nematic, those that had spacers with n = 6 and 8 were nematic cybotactic, and those that had longer spacers (n = 10 and 12) were smectic C and showed some crystallization of the side alkyl chains. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3002–3012, 2004 相似文献
16.
Lanying Zhang Hongliang Wu Zhihao Shen Xinghe Fan Qifeng Zhou 《Journal of polymer science. Part A, Polymer chemistry》2011,49(14):3207-3217
This work focuses on the design, synthesis, and characterization of a series of mesogen‐jacketed liquid crystalline polymers (MJLCPs), poly(alkyl 4′‐(octyloxy)‐2‐vinylbiphenyl‐4‐carboxylate) (pVBP(m,8), m = 1, 2, 4, 6, 8, 10, 12). For the first time, we realized asymmetric substitutions in the mesogens of MJLCPs. The polymers obtained by conventional free radical polymerization were investigated in detail by a combination of various techniques, such as differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized light microscopy. Our results showed that all the polymers were thermally stable, and their glass transition temperatures decreased when m increased. The liquid crystalline (LC) phases that developed at high temperatures and disappeared at low temperatures were strongly dependent on the difference in lengths of alkyl groups on the 4 and 4′ substitution positions of the side‐chain biphenyl. While polymer pVBP(1,8) was not liquid crystalline, columnar liquid crystalline phases were observed for all other pVBP(m,8) (m = 2, 4, 6, 8, 10, 12) polymers. Polymer pVBP(8,8) showed a tetragonal columnar nematic liquid crystalline phase, and the other LC polymers exhibited columnar nematic phases. In additions, the smaller the difference in the lengths of the terminal alkyls, the easier the development of the liquid crystalline phase. Birefringence measurements showed that solution‐cast polymer films exhibited moderately high positive birefringence values, indicating potential applications as optical compensation films for liquid crystal displays. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
17.
V. Srinivasa Rao A. B. Samui 《Journal of polymer science. Part A, Polymer chemistry》2008,46(2):552-563
A series of photoactive liquid crystalline linear and hyperbranched polyester epoxies were synthesized by polyaddition of photoactive bis benzylidene alkanone diol monomers and terephthalic acid and trimesic acid respectively with good yield. The effect of molecular architecture (linear and hyperbranched), size of mesogenic unit (cyclic and acyclic units) on the physicochemical, thermal, mesogenic, and photoactive properties of hyperbranched polymers were studied and compared. Degree of branching of hyperbranched polymers was found to be in the range of 0.46–0.49. Monomers containing cyclic moieties only exhibited nematic mesophase, while all polymers exhibited typical nematic mesophase. Intermolecular photo cycloaddition reaction was studied by ultraviolet–visible spectra (UV–vis) and NMR spectroscopy and photo viscosity measurement of UV irradiated polymer solutions. Faster photo induced behavior of hyperbranched polymers containing acyclic alkanone moiety, as compared to polymers containing cycloalkanone moieties, was observed. The change in the refractive index was found to be in the range of 0.02–0.024. Substantial variation of refractive index indicates that this polymer could be used for optical recording. All the polymers were also found to be fluorescent in nature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 552–563, 2008 相似文献
18.
P. Forcén L. Oriol C. Sánchez R. Alcalá S. Hvilsted K. Jankova J. Loos 《Journal of polymer science. Part A, Polymer chemistry》2007,45(10):1899-1910
Diblock copolymers with polymethyl methacrylate and side chain liquid crystalline (LC) azopolymethacrylate blocks were synthesized by atom transfer radical polymerization (ATRP). The azobenzene content in these copolymers ranges from 52 to 7 wt %. For an azo content down to 20% they exhibit a LC behavior similar to that of the azo homopolymers. Thin films of these copolymers were characterized by transmission electron microscopy (TEM). A lamellar nanostructure was observed for azo content down to 20 wt %, while no structure is observed for the copolymer with a 7% azo content. The optical anisotropy induced in these films by illumination with linearly polarized 488 nm light was studied and the results compared with those of the azo homopolymer and of a random copolymer with a similar composition. The formation of azo aggregates inside the azo blocks is strongly reduced in going from the homopolymer to the copolymers. Photoinduced azo orientation perpendicular to the 488 nm light polarization was found in all the polymers. The orientational order parameter is very similar in the homopolymer and in the block copolymers with an azo content down to 20 wt %, while it is much lower in the random copolymer and in the 7 wt %. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1899–1910, 2007 相似文献
19.
Raquel Alicante Rafael Cases Patricia Forcén Luis Oriol Belén Villacampa 《Journal of polymer science. Part A, Polymer chemistry》2010,48(1):232-242
Azobenzene monomeric precursors bearing piperazine as donor moiety with different withdrawing groups and derived side chain polymethacrylates have been prepared and characterized. Monomers having terminal cyano or nitro groups, and the corresponding polymers, exhibited smectic A phases. Linear and nonlinear optical properties of every monomer and thin films of the cyano polymer ( pol‐PZ‐CN ) have been also studied. UV‐vis spectroscopy revealed out‐of‐plane orientation in the as prepared films, as confirmed by waveguide refractive index measurements. Moreover, absorption spectra indicated the presence of azo aggregates in these films. The initial molecular arrangement has been modified by applying thermal annealing within the mesophase range and UV‐blue irradiation. Although thermal annealing resulted in a significant amplification of the out‐of‐plane optical anisotropy due to thermotropic self‐organization of side chain azo moieties, irradiation with 440 nm light induced some disruption of aggregates. The nonlinear optical response of Corona poled films has been studied by second harmonic generation measurements, and the influence of the molecular arrangement on the nonlinear dij coefficients has been analyzed. The more efficient poling corresponded to preirradiated films. In any case, a noticeable degree of polar order (70% of the initial d33 value) remained for several months after the poling in films kept at RT. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 232–242, 2010 相似文献
20.
David Ribera Angels Serra Ana Mantecn 《Journal of polymer science. Part A, Polymer chemistry》2003,41(16):2521-2530
We studied the curing processes of several series of dimeric liquid‐crystalline epoxyimine monomers with 2,4‐toluene diisocyanate (TDI) alone or with added catalytic proportions of 4‐(N,N‐dimethylamino)pyridine. We obtained isotropic materials or liquid‐crystalline thermosets with different degrees of order, which depended on the structures of the monomers. To fix ordered networks, we had to do the curing in two steps when TDI was used alone as the curing agent. However, when a tertiary amine was added in catalytic proportions, the ordered networks were fixed in just one step. In this way, we were able to fix both nematic and smectic mesophases. The significance of the polarization of the mesogen for obtaining liquid‐crystalline thermosets was demonstrated. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2521–2530, 2003 相似文献