首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theoretical simulation of the bandshape and fine structure of the νs stretching band is presented for tropolone‐H and tropolone‐D taking into account an adiabatic coupling between the high‐frequency O–H(D) stretching and the low‐frequency intra‐ and intermolecular OO stretching modes, and linear and quadratic distortions of the potential energies for the low‐frequency vibrations in the excited state of the O–H(D) stretching vibration. In order to determine the low‐frequency vibrations, the experimental spectra of the polycrystalline tropolone in the far‐infrared and the low‐frequency Raman range have been recorded for the first time. The experimental frequencies in the low‐frequency region are compared with the results of the HF/6‐31G** and Becke3LYP/6‐31G** calculations carried out for the tropolone dimer. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 73: 275–282, 1999  相似文献   

2.
The crystal structure and the results of theoretical calculations for the new organoarsenate salt o‐anisidinium dihydroarsenate (systematic name: 2‐methoxyanilinium dihydrogen arsenate), C7H10NO+·H2AsO4?, are reported. The salt, crystallizing in the triclinic space group P, was synthesized using a solution method and was characterized by single‐crystal X‐ray diffraction analysis. It possesses a layered supramolecular architecture in the crystal. The intermolecular interactions were studied using Hirshfeld surface analysis which confirmed that hydrogen bonds and H…H contacts play dominant roles in the crystal structure of the investigated system. An analysis of the electronic structure and molecular modelling using charge distribution confirms the good electrophilic reactivity of the title compound.  相似文献   

3.
In the structure of 2‐(4‐chloroanilino)‐1,3,2λ4‐diazaphosphol‐2‐one, C12H11ClN3OP, each molecule is connected with four neighbouring molecules through (N—H)2…O hydrogen bonds. These hydrogen bonds form a tubular arrangement along the [001] direction built from R 33(12) and R 43(14) hydrogen‐bond ring motifs, combined with a C (4) chain motif. The hole constructed in the tubular architecture includes a 12‐atom arrangement (three P, three N, three O and three H atoms) belonging to three adjacent molecules hydrogen bonded to each other. One of the N—H groups of the diazaphosphole ring, not co‐operating in classical hydrogen bonding, takes part in an N—H…π interaction. This interaction occurs within the tubular array and does not change the dimension of the hydrogen‐bond pattern. The energies of the N—H…O and N—H…π hydrogen bonds were studied by NBO (natural bond orbital) analysis, using the experimental hydrogen‐bonded cluster of molecules as the input file for the chemical calculations. In the 1H NMR experiment, the nitrogen‐bound proton of the diazaphosphole ring has a high value of 17.2 Hz for the 2J H–P coupling constant.  相似文献   

4.
The calculations of nitrogen‐14 nuclear quadrupole parameters, nuclear quadrupole coupling constant, χ, and asymmetry parameter, η, of L‐His were done in two distinct environments: one as a free fully optimized molecule, an isolated molecule with the geometrical parameters taken from X‐ray, and the other in the orthorhombic and monoclinic solid states. The most probable interacting molecules with the central molecule in the crystalline phase were considered in the hexameric clusters to include hydrogen‐bonding effects in the calculations. The computations were performed with PW91P86/6‐31++G** and B3LYP6‐31++G** methods using the Gaussian 98 program. The good agreement between the nitrogen‐14 quadrupole parameters of the free His and imidazole molecules with their microwave available data demonstrates that the applied level of theory and the 6‐31++G** basis set are suitable to obtain reliable electric field gradient values. In the solid state, the shifts of quadrupole coupling parameters from the monomer to the solid phase are reasonably well reproduced for the amino and imino sites of imidazole ring in a hexameric cluster. That implies the fact that the hexameric cluster worked effectively to generate the results which are compatible with the experiment. The quadrupole coupling constant values of –N+H3 group are in fair agreement with the experiment. This discrepancy is due to the absences of vibrational effects and the rotation of –N+H3 group around N–C(α) bond. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Intramolecular H‐bonds existing for derivatives of 3‐imino‐propenylamine have been studied using the B3LYP/6‐311++G** level of theory. The nature of these interactions, known as resonance‐assisted hydrogen bonds, has been discussed. Vibrational frequencies for α‐derivatives were calculated at the same level of theory. The topological properties of the electron density distributions for N? H···N intramolecular bridges have been analyzed in terms of the Bader theory of atoms in molecules (AIM). Calculation for 3‐imino‐propenylamine derivatives in water solution were also carried out at B3LYP/6‐311++G** level of theory. Finally, the analysis of hydrogen bond in this molecule and their derivatives by quantum theory of natural bond orbital methods fairly support the ab initio results. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

6.
In this study, the seGVB method was implemented for the N H bonding system, specifically for hydrogen‐bonded ammonia complexes, and the model well reproduces the MP2 geometries and energetics. A comparison between the ammonia dimer and water dimer is given from the viewpoint of valance‐bond structures in terms of the calculated bond energies and pair–pair interactions. The linear hydrogen bond is found to be stronger than the bent bonds in both cases, with the difference in energy between the linear and cyclic structures being comparable in both cases although the NH bonds are generally weaker. The energy decomposition clearly demonstrates that the changes in electronic energy are quite different in the two cases due to the presence of an additional lone pair on the water molecule, and it is this effect which leads to the net stabilization of the cyclic structure for the ammonia dimer. Proton‐transfer profiles for hydrogen‐bonded ammonia complexes [NH2 H NH2] and [NH3 H NH3]+ were calculated. The barrier for proton transfer in [NH3 H NH3]+ is larger than that in [NH2 H NH2], but smaller than that in the protonated water dimer. The different bonding structures substantially affect the barrier to proton transfer, even though they are isoelectronic systems. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 73: 357–367, 1999  相似文献   

7.
The influence of the hydrogen bond formation on the NMR spin–spin coupling constants (SSCC), including the Fermi contact (FC), the diamagnetic spin‐orbit, the paramagnetic spin‐orbit, and the spin dipole term, has been investigated systematically for the homogeneous glycine cluster, in gas phase, containing up to three monomers. The one‐bond and two‐bond SSCCs for several intramolecular (through covalent bond) and intermolecular (across the hydrogen‐bond) atomic pairs are calculated employing the density functional theory with B3LYP and KT3 functionals and different types of extended basis sets. The ab initio SOPPA(CCSD) is used as benchmark for the SSCCs of the glycine monomer. The hydrogen bonding is found to cause significant variations in the one‐bond SSCCs, mostly due to contribution from electronic interactions. However, the nature of variation depends on the type of oxygen atom (proton‐acceptor or proton‐donor) present in the interaction. Two‐bond intermolecular coupling constants vary more than the corresponding one‐bond constants when the size of the cluster increases. Among the four Ramsey terms that constitute the total SSCC, the FC term is the most dominant contributor followed by the paramagnetic spin‐orbit term in all one‐bond interaction.  相似文献   

8.
Hydrogen bonding interactions between amino acids and nucleic acid bases constitute the most important interactions responsible for the specificity of protein binding. In this study, complexes formed by hydrogen bonding interactions between cysteine and thymine have been studied by density functional theory. The relevant geometries, energies, and IR characteristics of hydrogen bonds (H‐bonds) have been systematically investigated. The quantum theory of atoms in molecule and natural bond orbital analysis have also been applied to understand the nature of the hydrogen bonding interactions in complexes. More than 10 kinds of H‐bonds including intra‐ and intermolecular H‐bonds have been found in complexes. Most of intermolecular H‐bonds involve O (or N) atom as H‐acceptor, whereas the H‐bonds involving C or S atom usually are weaker than other ones. Both the strength of H‐bonds and the structural deformation are responsible for the stability of complexes. Because of the serious deformation, the complex involving the strongest H‐bond is not the most stable structures. Relationships between H‐bond length (ΔRX‐H), frequency shifts (Δv), and the electron density (ρb) and its Laplace (?2ρb) at bond critical points have also been investigated. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

9.
A simple model has been proposed to explain trends in the computed interaction energy, bond length changes, frequency shifts and infrared intensities for the chlorofluoromethanes CFnClmH, FH and FArH on complexation with the isoelectronic diatomics BF, CO, N2 and the rare gas atoms Kr, Ar, Ne to form a series of linear or nearly linear hydrogen‐bonded complexes. The dipole moment derivative of the proton donor (with respect to the stretching coordinate) and the chemical hardness of the hydrogen‐bonded atom of the proton acceptor are identified as two useful parameters for rationalizing the changes in some of the molecular properties of the proton donor when the hydrogen bond is formed. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

10.
11.
A hydrogen‐bonded helical columnar liquid crystal was synthesized, in which the helical structure is induced by a centered triphenylene derivative bearing chiral side‐chains. The triphenylene derivative, 2,6,10‐tris(carboxymethoxy)‐3,7,11‐tris((S)‐(‐)‐2‐methyl‐1‐butanoxy)triphenylene ( TPC4(S) ), and a dendric amphiphile, 3,5‐bis‐(3,4‐bis‐dodecyloxy‐benzyloxy)‐N‐pyridine‐4‐yl‐benzamide ( DenC12 ), were mixed in a 1:3 ratio to obtain a complex, TPC4(S)‐DenC12 . Analyses by 1H‐NMR spectroscopy, diffusion ordered spectroscopy (DOSY), CD spectroscopy, infrared (IR) spectroscopy, polarized optical microscopy (POM), differential scanning calorimetry (DSC), and X‐ray diffractometry revealed that TPC4(S)‐DenC12 self‐assembles to form helical columnar stacks in solution and a helical columnar liquid crystal in bulk. The hydrogen bonding between TPC4(S) and DenC12 is essential for the helical columnar organization, and the preference for a one‐handed helical conformation is likely derived from the steric interaction between the chiral side‐chains and the dendric amphiphiles in the packing of the hydrogen‐bonded columnar assemblies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The structures of the 1:1 hydrated proton‐transfer compounds of isonipecotamide (piperidine‐4‐carboxamide) with oxalic acid, 4‐carbamoylpiperidinium hydrogen oxalate dihydrate, C6H13N2O+·C2HO4·2H2O, (I), and with adipic acid, bis(4‐carbamoylpiperidinium) adipate dihydrate, 2C6H13N2O+·C6H8O42−·2H2O, (II), are three‐dimensional hydrogen‐bonded constructs involving several different types of enlarged water‐bridged cyclic associations. In the structure of (I), the oxalate monoanions give head‐to‐tail carboxylic acid O—H...Ocarboxyl hydrogen‐bonding interactions, forming C(5) chain substructures which extend along a. The isonipecotamide cations also give parallel chain substructures through amide N—H...O hydrogen bonds, the chains being linked across b and down c by alternating water bridges involving both carboxyl and amide O‐atom acceptors and amide and piperidinium N—H...Ocarboxyl hydrogen bonds, generating cyclic R43(10) and R32(11) motifs. In the structure of (II), the asymmetric unit comprises a piperidinium cation, half an adipate dianion, which lies across a crystallographic inversion centre, and a solvent water molecule. In the crystal structure, the two inversion‐related cations are interlinked through the two water molecules, which act as acceptors in dual amide N—H...Owater hydrogen bonds, to give a cyclic R42(8) association which is conjoined with an R44(12) motif. Further N—H...Owater, water O—H...Oamide and piperidinium N—H...Ocarboxyl hydrogen bonds give the overall three‐dimensional structure. The structures reported here further demonstrate the utility of the isonipecotamide cation as a synthon for the generation of stable hydrogen‐bonded structures. The presence of solvent water molecules in these structures is largely responsible for the non‐occurrence of the common hydrogen‐bonded amide–amide dimer, promoting instead various expanded cyclic hydrogen‐bonding motifs.  相似文献   

13.
14.
The nature of the interactions of cyanide with lithium and hydrogen halides was investigated using ab initio calculations and topological analysis of electron density. The computed properties of the lithium‐bonded complexes RCN···LiX (R = H, F, Cl, Br, C?CH, CH?CH2, CH3, C2H5; X = Cl, Br) were compared with those of corresponding hydrogen‐bonded complexes RCN···HX. The results show that both types of intermolecular interactions are “closed‐shell” noncovalent interactions. The effect of substitution on the interaction energy and electron density at the bond critical points of the lithium and hydrogen bonding interactions is similar. In comparison, the interaction energies of lithium‐bonded complexes are more negative than those of hydrogen‐bonded counterparts. The electrostatic interaction plays a more important role in the lithium bond than in the hydrogen bond. On complex formation, the net charge and energy of the Li atom decrease and the atomic volume increases, while the net charge and energy of the H atom increase and the atomic volume decreases. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
The morpholinium (tetrahydro‐2H‐1,4‐oxazin‐4‐ium) cation has been used as a counter‐ion in both inorganic and organic salt formation and particularly in metal complex stabilization. To examine the influence of interactive substituent groups in the aromatic rings of benzoic acids upon secondary structure generation, the anhydrous salts of morpholine with salicylic acid, C4H10NO+·C7H5O3, (I), 3,5‐dinitrosalicylic acid, C4H10NO+·C7H3N2O7, (II), 3,5‐dinitrobenzoic acid, C4H10NO+·C7H3N2O6, (III), and 4‐nitroanthranilic acid, C4H10NO+·C7H5N2O4, (IV), have been prepared and their hydrogen‐bonded crystal structures are described. In the crystal structures of (I), (III) and (IV), the cations and anions are linked by moderately strong N—H…Ocarboxyl hydrogen bonds, but the secondary structure propagation differs among the three, viz. one‐dimensional chains extending along [010] in (I), a discrete cyclic heterotetramer in (III), and in (IV), a heterotetramer with amine N—H…O hydrogen‐bond extensions along b, giving a two‐layered ribbon structure. With the heterotetramers in both (III) and (IV), the ion pairs are linked though inversion‐related N—H…Ocarboxylate hydrogen bonds, giving cyclic R44(12) motifs. With (II), in which the anion is a phenolate rather than a carboxylate, the stronger assocation is through a symmetric lateral three‐centre cyclic R12(6) N—H…(O,O′) hydrogen‐bonding linkage involving the phenolate and nitro O‐atom acceptors of the anion, with extension through a weaker O—H…Ocarboxyl hydrogen bond. This results in a one‐dimensional chain structure extending along [100]. In the structures of two of the salts [i.e. (II) and (IV)], there are also π–π ring interactions, with ring‐centroid separations of 3.5516 (9) and 3.7700 (9) Å in (II), and 3.7340 (9) Å in (IV).  相似文献   

16.
The carboxylic acid group is an example of a functional group which possess a good hydrogen‐bond donor (–OH) and acceptor (C=O). For this reason, carboxylic acids have a tendency to self‐assembly by the formation of hydrogen bonds between the donor and acceptor sites. We present here the crystal structure of N‐tosyl‐l ‐proline (TPOH) benzene hemisolvate {systematic name: (2S)‐1‐[(4‐methylbenzene)sulfonyl]pyrrolidine‐2‐carboxylic acid benzene hemisolvate}, C12H15NO4S·0.5C6H6, (I), in which a cyclic R22(8) hydrogen‐bonded carboxylic acid dimer with a strong O—(H)…(H)—O hydrogen bond is observed. The compound was characterized by single‐crystal X‐ray diffraction and NMR spectroscopy, and crystallizes in the space group I2 with half a benzene molecule and one TPOH molecule in the asymmetric unit. The H atom of the carboxyl OH group is disordered over a twofold axis. An analysis of the intermolecular interactions using the noncovalent interaction (NCI) index showed that the TPOH molecules form dimers due to the strong O—(H)…(H)—O hydrogen bond, while the packing of the benzene solvent molecules is governed by weak dispersive interactions. A search of the Cambridge Structural Database revealed that the disordered dimeric motif observed in (I) was found previously only in six crystal structures.  相似文献   

17.
A fixed hydrogen‐bonding motif with a high probability of occurring when appropriate functional groups are involved is described as a `supramolecular hydrogen‐bonding synthon'. The identification of these synthons may enable the prediction of accurate crystal structures. The rare chiral hydrogen‐bonding motif R53(10) was observed previously in a cocrystal of 2,4,6‐trichlorophenol, 2,4‐dichlorophenol and dicyclohexylamine. In the title solvated salt, 2C4H12N+·C6H3Cl2O·(C6H3Cl2O·C6H4Cl2O)·2C4H8O, five components, namely two tert‐butylammonium cations, one 2,4‐dichlorophenol molecule, one 2,4‐dichlorophenolate anion and one 2,6‐dichlorophenolate anion, are bound by N—H…O and O—H…O hydrogen bonds to form a hydrogen‐bonded ring, with the graph‐set motif R53(10), which is further associated with two pendant tetrahydrofuran molecules by N—H…O hydrogen bonds. The hydrogen‐bonded ring has internal symmetry, with a twofold axis running through the centre of the 2,6‐dichlorophenolate anion, and is isostructural with a previous and related structure formed from 2,4‐dichlorophenol, dicyclohexylamine and 2,4,6‐trichlorophenol. In the title crystal, helical columns are built by the alignment and twisting of the chiral hydrogen‐bonded rings, along and across the c axis, and successive pairs of rings are associated with each other through C—H…π interactions. Neighbouring helical columns are inversely related and, therefore, no chirality is sustained, in contrast to the previous case.  相似文献   

18.
(2R*,4S*)‐Methyl 2,3,4,5‐tetrahydro‐1,4‐epoxy‐1H‐benz[b]azepine‐2‐carboxylate, C12H13NO3, (I), and its reduction product (2R*,4S*)‐methyl 4‐hydroxy‐2,3,4,5‐tetrahydro‐1H‐benz[b]azepine‐2‐carboxylate, C12H15NO3, (II), both crystallize as single enantiomers in the space group P212121, while the hydrolysis product (2RS,4SR)‐4‐hydroxy‐2,3,4,5‐tetrahydro‐1H‐benz[b]azepine‐2‐carboxylic acid, C11H13NO3, (III), and the lactone (2RS,5SR)‐8‐(trifluoromethoxy)‐5,6‐dihydro‐1H‐2,5‐methanobenz[e][1,4]oxazocin‐3(2H)‐one, C12H10F3NO3, (IV), both crystallize as racemic mixtures in the space group P21/c. The molecules of compound (IV) are linked into centrosymmetric R22(10) dimers by N—H...O hydrogen bonds, and those of compound (I) are linked into chains by C—H...π(arene) hydrogen bonds. A combination of O—H...O and O—H...N hydrogen bonds links the molecules of compound (III) into sheets containing equal numbers of R44(14) and R44(26) rings, and a combination of C—H...π(arene) hydrogen bonds and three‐centre O—H...(N,O) hydrogen bonds links the molecules of compound (II) into a three‐dimensional framework structure. Comparisons are made with some related compounds.  相似文献   

19.
The title compound, 3,5‐Dimethyl‐pyrazole‐1‐carbodithioic acid benzyl ester, has been synthesized and structurally characterized by X‐ray single crystal diffraction, elemental analysis, IR spectra, and UV‐Vis spectrum. The crystal belongs to orthorhombic, space group P212121, with a = 5.3829(15), b = 11.193(3), c = 21.824(6) Å, V = 1315.0(6) Å3, and Z = 4. The molecules are connected via intermolecular C–H···N hydrogen bonds into 1D infinite chains. The crystal structure is consolidated by the intramolecular C–H···S hydrogen bonds. Furthermore, Density functional theory (DFT) calculations of the structure, stabilities, orbital energies, composition characteristics of some frontier molecular orbitals and Mulliken charge distributions of the title compound were performed by means of Gaussian 03W package and taking B3LYP/6‐31G(d) basis set. The time‐dependent DFT (TD‐DFT) calculations have been employed to calculate the electronic spectrum of the title compound, and the UV‐Vis spectra has been discussed on this basis. The results show that DFT method at B3LYP/6‐31G(d) level can well reproduce the structure of the title compound. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

20.
A thiocarbamide derivative containing Schiff base groups,1,5-bis[4-(dimethylamino)benzylidene]thiocarbonohydrazide,has been synthesized and characterized by elemental analysis,IR,1H NMR,UV and X-ray single-crystal diffraction.Density function theory(DFT) calculations at the B3LYP/6-31G* and PBE0/6-31G* levels for optimized geometries and electronic transition spectra have been performed.Comparative studies show that both B3LYP/6-31G* and PBE0/6-31G* methods can well reproduce the molecular structure,and the latter is more reliable than the former to simulate electronic spectra.NPA calculational results at the B3LYP/6-31G* level indicate the title compound to be a potential multidentate ligand to the metallic ions.Based on the vibrational analysis,thermodynamic properties at different temperatures have been obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号