首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
The semi‐analytical integration of an 8‐node plane strain finite element stiffness matrix is presented in this work. The element is assumed to be super‐parametric, having straight sides. Before carrying out the integration, the integral expressions are classified into several groups, thus avoiding duplication of calculations. Symbolic manipulation and integration is used to obtain the basic formulae to evaluate the stiffness matrix. Then, the resulting expressions are postprocessed, optimized, and simplified in order to reduce the computation time. Maple symbolic‐manipulation software was used to generate the closed expressions and to develop the corresponding Fortran code. Comparisons between semi‐analytical integration and numerical integration were made. It was demonstrated that semi‐analytical integration required less CPU time than conventional numerical integration (using Gaussian‐Legendre quadrature) to obtain the stiffness matrix. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

2.
The finite element method (FEM) is a numerical method for approximate solution of partial differential equations with appropriate boundary conditions. This work describes a methodology for generating the elastic stiffness matrix of an axisymmetric eight‐noded finite element with the help of Computer Algebra Systems. The approach is described as “semi analytical” because the formulation mimics the steps taken using Gaussian numerical integration techniques. The semianalytical subroutines developed herein run 50[percnt] faster than the conventional Gaussian integration approach. The routines, which are made publically available for download,1 should help FEM researchers and engineers by providing significant reductions of CPU times when dealing with large finite element models. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

3.
A rigid‐plastic hybrid element method (HEM) for simulation of metal forming is developed. This method is a mixed approach of the rigid‐plastic domain‐BEM and the rigid‐plastic FEM based on the theory of compressible plasticity. Because the compatibilities of not only velocity but also velocity's derivative between the adjoining boundary elements and finite elements can be met, the velocities and the derivatives of the velocity can be calculated with the same precision for the rigid‐plastic HEM. Then, it is considered that the rigid‐plastic HEM is a more precise method in formulation than the conventional rigid‐plastic FEMs for which the compatibilities of velocity's derivative cannot be met. The plane strain upsetting processes with two friction factors are analyzed by the rigid‐plastic HEM in this article. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 726–737, 2002; Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/num.10031.  相似文献   

4.
The (G′/G,1/G)‐expansion method and (1/G′)‐expansion method are interesting approaches to find new and more general exact solutions to the nonlinear evolution equations. In this paper, these methods are applied to construct new exact travelling wave solutions of nonlinear Schrödinger equation. The travelling wave solutions are expressed by hyperbolic functions, trigonometric functions and rational functions. It is shown that the proposed methods provide a powerful mathematical tool for solving nonlinear wave equations in mathematical physics and engineering. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
We analyze a mixed finite element discretization of a second‐order quasilinear problem based on the Raviart‐Thomas space. We prove that the discrete problem is solvable and provide a local uniqueness result for the solution. We also obtain optimal order L2‐error estimates for both the scalar variable and the associated flux. The main feature of our method is that it is free from the boundness conditions required in previous works on the coefficients of the quasilinear operator. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 90–103, 2004.  相似文献   

6.
We consider a time‐dependent and a stationary convection‐diffusion equation. These equations are approximated by a combined finite element – finite volume method: the diffusion term is discretized by Crouzeix‐Raviart piecewise linear finite elements on a triangular grid, and the convection term by upwind barycentric finite volumes. In the nonstationary case, we use an implicit Euler approach for time discretization. This scheme is shown to be L2‐stable uniformly with respect to the diffusion coefficient. In addition, it turns out that stability is unconditional in the time‐dependent case. These results hold if the underlying grid satisfies a condition that is fulfilled, for example, by some structured meshes. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 402–424, 2012  相似文献   

7.
This article analyses an existing 3‐node hybrid triangular element, called MiSP3, for Reissner–Mindlin plates which behaves robustly in numerical benchmark tests (Ayad, Dhatt, and Batoz, Int J Numer Method Eng 42 (1998), 1149–1179). Based on Hellinger‐Reissner variational principle and the mixed shear interpolation/projection technique of MITC family, the MiSP3 element uses continuous piecewise linear polynomials for the approximations of displacements and a piecewise‐independent equilibrium mode for the approximations of bending moments/shear stresses. Due to local elimination of the parameters of moments/stresses, the element is almost of the same computational cost as the conforming linear triangular displacement element. We derive uniform stability and convergence results with respect to the plate thickness. The main tools of our analysis are the self‐equilibrium relation of the moments/stresses approximations, the properties of the mixed shear interpolation and the discrete Helmholtz decomposition of the shear stress approximation. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 241–258, 2017  相似文献   

8.
We study an induction hardening model described by Maxwell's equations coupled with a heat equation. The magnetic induction field is assumed a nonlinear constitutional relation and the electric conductivity is temperature‐dependent. The Tψ method is to transform Maxwell's equations to the vector–scalar potential formulations and to solve the potentials by means of the finite element method. In this article, we present a fully discrete Tψ finite element scheme for this nonlinear coupled problem and discuss its solvability. We prove that the discrete solution converges to a weak solution of the continuous problem. Finally, we conclude with two numerical experiments for the coupled system.  相似文献   

9.
Consider the diffraction of a time‐harmonic wave incident upon a periodic (grating) structure. Under certain assumptions, the diffraction problem may be modelled by a Helmholtz equation with transparent boundary conditions. In this paper, the diffraction problem is formulated as a first‐order system of linear equations and solved by a least‐squares finite element method. The method follows the general minus one norm approach of Bramble, Lazarov, and Pasciak. Our computational experiments indicate that the method is accurate with the optimal convergence property, and it is capable of dealing with complicated grating structures. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
This article focuses on discontinuous Galerkin method for the two‐ or three‐dimensional stationary incompressible Navier‐Stokes equations. The velocity field is approximated by discontinuous locally solenoidal finite element, and the pressure is approximated by the standard conforming finite element. Then, superconvergence of nonconforming finite element approximations is applied by using least‐squares surface fitting for the stationary Navier‐Stokes equations. The method ameliorates the two noticeable disadvantages about the given finite element pair. Finally, the superconvergence result is provided under some regular assumptions. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 23: 421–436, 2007  相似文献   

11.
In this paper, a coupled Burgers’ equation has been numerically solved by a Galerkin quadratic B‐spline FEM. The performance of the method has been examined on three test problems. Results obtained by the method have been compared with known exact solution and other numerical results in the literature. A Fourier stability analysis of the method is also investigated. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
In this article, a Galerkin's finite element approach based on weighted‐residual is presented to find approximate solutions of a system of fourth‐order boundary‐value problems associated with obstacle, unilateral and contact problems. The approach utilizes a piece‐wise cubic approximations utilizing cubic Hermite interpolation polynomials. Numerical studies have shown the superior accuracy and lesser computational cost of the scheme in comparison to cubic spline, non‐polynomial spline and cubic non‐polynomial spline methods. Numerical examples are presented to illustrate the applicability of the method. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1551–1560, 2011  相似文献   

13.
In this paper, we constructed the split‐step θ (SSθ)‐method for stochastic age‐dependent population equations. The main aim of this paper is to investigate the convergence of the SS θ‐method for stochastic age‐dependent population equations. It is proved that the proposed method is convergent with strong order 1/2 under given conditions. Finally, an example is simulated to verify the results obtained from the theory, and comparative analysis with Euler method is given, the results show the higher accuracy of the SS θ‐method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The paper is devoted to the spectral analysis of effective preconditioners for linear systems obtained via a finite element approximation to diffusion‐dominated convection–diffusion equations. We consider a model setting in which the structured finite element partition is made by equilateral triangles. Under such assumptions, if the problem is coercive and the diffusive and convective coefficients are regular enough, then the proposed preconditioned matrix sequences exhibit a strong eigenvalue clustering at unity, the preconditioning matrix sequence and the original matrix sequence are spectrally equivalent, and under the constant coefficients assumption, the eigenvector matrices have a mild conditioning. The obtained results allow to prove the conjugate gradient optimality and the generalized minimal residual quasi‐optimality in the case of structured uniform meshes. The interest of such a study relies on the observation that automatic grid generators tend to construct equilateral triangles when the mesh is fine enough. Numerical tests, both on the model setting and in the non‐structured case, show the effectiveness of the proposal and the correctness of the theoretical findings. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
A linearized three‐step backward differential formula (BDF) Galerkin finite element method (FEM) is developed for nonlinear Sobolev equation with bilinear element. Temporal error and spatial error are discussed through introducing a time‐discrete system. Solutions of the time‐discrete system are bounded in H2‐norm by the temporal error. Superconvergence results of order O(h2 + τ3) in H1‐norm for the original variable are deduced based on the spatial error. Some new tricks are utilized to get higher order of the temporal error and the spatial error. At last, two numerical examples are provided to support the theoretical analysis. Here, h is the subdivision parameter, and τ is the time step.  相似文献   

16.
In this paper, using the Riemann‐Liouville fractional integral with respect to another function and the ψ?Hilfer fractional derivative, we propose a fractional Volterra integral equation and the fractional Volterra integro‐differential equation. In this sense, for this new fractional Volterra integro‐differential equation, we study the Ulam‐Hyers stability and, also, the fractional Volterra integral equation in the Banach space, by means of the Banach fixed‐point theorem. As an application, we present the Ulam‐Hyers stability using the α‐resolvent operator in the Sobolev space .  相似文献   

17.
Preservation of the maximum principle is studied for the combination of the linear finite element method in space and the θ ‐method in time for solving time‐dependent anisotropic diffusion problems. It is shown that the numerical solution satisfies a discrete maximum principle when all element angles of the mesh measured in the metric specified by the inverse of the diffusion matrix are nonobtuse, and the time step size is bounded below and above by bounds proportional essentially to the square of the maximal element diameter. The lower bound requirement can be removed when a lumped mass matrix is used. In two dimensions, the mesh and time step conditions can be replaced by weaker Delaunay‐type conditions. Numerical results are presented to verify the theoretical findings. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

18.
This paper deals with the dynamics of non‐linear distributed parameter fixed‐bed bioreactors. The model consists of a pair of non‐linear partial differential (evolution) equations. The true spatially three‐dimensional situation is considered instead of the usual one‐dimensional approximation. This enables one to take into account the effects of flow profiles and the true location of the measurement transducer. The (output) evolution of the corresponding open‐loop control system is simulated. Furthermore, the associated closed‐loop system with respect to the relevant output function is considered. Especially, the asymptotic output tracking is found to be successful by applying the usual process based on the state feedback linearization. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
An interpolated coefficient finite element method is presented and analyzed for the two‐dimensional elliptic sine‐Gordon equations with Dirichlet boundary conditions. It is proved that the discretization scheme admits at least one solution, and that a subsequence of the approximation solutions converges to an exact solution in L2‐norm as the mesh size tends to zero. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

20.
In this paper, the full discrete scheme of mixed finite element approximation is introduced for semilinear hyperbolic equations. To solve the nonlinear problem efficiently, two two‐grid algorithms are developed and analyzed. In this approach, the nonlinear system is solved on a coarse mesh with width H, and the linear system is solved on a fine mesh with width hH. Error estimates and convergence results of two‐grid method are derived in detail. It is shown that if we choose in the first algorithm and in the second algorithm, the two‐grid algorithms can achieve the same accuracy of the mixed finite element solutions. Finally, the numerical examples also show that the two‐grid method is much more efficient than solving the nonlinear mixed finite element system directly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号