首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several titanium complexes based on aminodiol ligands were tested as initiators for the ring‐opening polymerization (ROP) of ε‐caprolactone under solution and bulk conditions. All complexes were found to be efficient under both conditions. For bulk polymerization at 70 °C, high activities were observed (113.3–156.2 gpoly mmolcat?1 h?1) together with controlled molar mass distribution. Kinetic studies revealed controlled polymerization, and the chain propagation was first order with respect to monomer conversion. One complex was also tested for the ROP of rac‐β‐butyrolactone and the end‐group analysis suggested that ring opening occurs through acyl‐oxygen bond cleavage via coordination–insertion mechanism. The microstructure analysis of polymer by 13C NMR indicates atactic polymer. Another complex was also found to be efficient initiator for the ROP of trimethylene carbonate under solution and bulk conditions. Again, end‐group analysis suggests coordination–insertion mechanism. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
We examined the ring‐opening polymerization of ε‐caprolactone in toluene between 50 and 70 °C, and catalyzed by some Lewis and Brønsted acids to investigate the effects of microwave versus conventional heating on the kinetics and activation thermodynamics of the reaction. The polymerizations proceeded more rapidly when microwave heating, instead of conventional heating, was used to control the temperature. The number‐average molecular weight (Mn) of the polymer could be controlled even when microwave heating was used. To identify which thermodynamic activation constants were responsible for the accelerated polymerizations, we performed the reaction at different temperatures to obtain data for the Arrhenius and Eyring equations. Although the values for the activation energies and the activation enthalpies were larger when microwave heating rather than conventional heating was used, the frequency factors and the activation entropies (ΔS?) over compensated for the less favorable activation energies and enthalpies. The more favorable ΔG? found for the microwave‐assisted polymerizations mainly reflect the larger ΔS? values, and the rate accelerations appear to be a consequence of differently arranged intermediates and/or transition states. © 2013 Wiley Periodicals, Inc. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3732–3739  相似文献   

3.
A series of copolymers containing ε‐caprolactone (CL) and 4‐methyl‐ε‐caprolactone (MeCL) were synthesized by ring‐opening polymerization (ROP) using Tin(II) bis(2‐ethylhexanoate)(Sn(Oct)2) or Novozym 435 as catalyst. The molecular structure and weight of copolymers were determined by nuclear magnetic resonance (NMR) and size exclusion chromatography (SEC), respectively. Our kinetic study showed that the monomer reactivity ratios for CL (r1) and MeCL (r2) using Sn(Oct)2 as catalyst were estimated to be near unity and r1 × r2 = 1, indicating the random distribution of the monomers in the final copolymer. The results of DSC and XRD consistently indicated that the copolymers were inclined to be amorphous with the increasing of MeCL fraction. Microspheres were prepared from copolymers and characterized by SEM. The preliminary degradability and biocompatibility studies on these copolymers were also assessed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
The copolymerization of racemic β‐butyrolactone (rac‐BLMe) with racemic “allyl‐β‐butyrolactone” (rac‐BLallyl) in toluene, catalyzed by the discrete amino‐alkoxy‐bis(phenolate) yttrium‐amido complex 1 , gave new poly(β‐hydroxyalkanoate)s with unsaturated side chains. The poly(BLMeco‐BLallyl) copolymers produced have a highly syndiotactic backbone structure (Pr = 0.80–0.84) with a random enchainment of monomer units, as evidenced by 13C NMR, and high molecular weight (Mn up to 58,000 g mol?1) with a narrow polydispersity (Mw/Mn = 1.07–1.37), as determined by GPC. The comonomer incorporation (5–50 mol % rac‐BLallyl) was a linear function of the feed ratio. The pendant vinyl bond of the side‐chains in those poly(BLMeco‐BLallyl) copolymers allowed the effective introduction of hydroxy or epoxy groups via dihydroxylation, hydroboration‐oxidation or epoxidation reactions. NMR studies indicated that all of these transformations proceed in an essentially quantitative conversion and do not affect the macromolecular architecture. Some thermal properties (Tm, ΔHm, Tg) of the prepared polymers have been also evaluated. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3177–3189, 2009  相似文献   

5.
New monoalkyl‐substituted lactides were synthesized by reaction of α‐hydroxy acids with 2‐bromopropionyl bromide, and polymerized with various catalysts in the presence of benzyl alcohol by ring‐opening polymerization (ROP). The classic tin(II) 2‐ethylhexanoate (Sn(Oct)2) catalyst was leading to polymers with narrow distribution and predictable molecular weights, in polymerizations in bulk or toluene at 100 °C. The polymerization rate was corresponding to the steric hindrance of the alkyl substituents, such as butyl, hexyl, benzyl, isopropyl, and dimethyl groups. A yield of 83% was obtained with the hexyl‐substituted lactide after 1 h of polymerization. Excellent conversions (97%) could be achieved by using the alternative catalyst 4‐(dimethylamino)pyridine (DMAP). This latter organic catalyst was most efficient in polymerizing the more steric‐hindered lactides with good molecular weight and polydispersity control, in comparison to the tin(II) 2‐ethylhexanoate and tin(II) trifluoromethane sulfonate [Sn(OTf)2] catalysts. The efficiency of the DMAP catalyst and the variability of the monomer synthesis route for new alkyl‐substituted lactides allow to prepare and to envision a wide range of new functionalized polylactides for the elaboration of tailored materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4379–4391, 2004  相似文献   

6.
7.
Reversible addition‐fragmentation chain transfer (RAFT) polymerization is a more robust and versatile approach than other living free radical polymerization methods, providing a reactive thiocarbonylthio end group. A series of well‐defined star diblock [poly(ε‐caprolactone)‐b‐poly(N‐isopropylacrylamide)]4 (SPCLNIP) copolymers were synthesized by R‐RAFT polymerization of N‐isopropylacrylamide (NIPAAm) using [PCL‐DDAT]4 (SPCL‐DDAT) as a star macro‐RAFT agent (DDAT: S‐1‐dodecyl‐S′‐(α, α′‐dimethyl‐α″‐acetic acid) trithiocarbonate). The R‐RAFT polymerization showed a controlled/“living” character, proceeding with pseudo‐first‐order kinetics. All these star polymers with different molecular weights exhibited narrow molecular weight distributions of less than 1.2. The effect of polymerization temperature and molecular weight of the star macro‐RAFT agent on the polymerization kinetics of NIPAAm monomers was also addressed. Hardly any radical–radical coupling by‐products were detected, while linear side products were kept to a minimum by careful control over polymerization conditions. The trithiocarbonate groups were transferred to polymer chain ends by R‐RAFT polymerization, providing potential possibility of further modification by thiocarbonylthio chemistry. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
The cyclometalated complex [RuII(o‐C6H4‐py)(MeCN)4]PF6 ( 1 ) with a σ‐Ru? C bond and four substitutionally labile acetonitrile ligands mediates radical polymerization of different vinyl monomers, viz. n‐butyl acrylate, methyl methacrylate, and styrene, initiated by three alkyl bromides: ethyl 2‐bromoisobutyrate, methyl 2‐bromopropionate, and 1‐phenylethyl bromide. The polymerization requires the presence of Al(OiPr)3 and occurs uncontrollably as a conventional radical process. The variation of the molar ratio of the components of the reaction mixture, such as initiator, Al(OiPr)3 and catalyst, affected the polymerization rates and the molecular weights but did not improve the control. A certain level of control has been achieved by adding 0.5 eq of SnCl2 as a reducing agent. Tin(II) chloride decreased the rate of polymerization and simultaneously the molecular weights became conversion‐dependent and the polydispersities were also narrowed. Remarkably, the level of control was radically improved in the presence of excess of the poorly soluble catalyst ( 1 ), when the added amount of ( 1 ) was not soluble any more, i.e., under heterogeneous conditions, the system became adjustable and the living polymerization of all three monomers was finally achieved. Possible mechanisms of the ( 1 )‐catalyzed polymerization are discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4193–4204, 2008  相似文献   

9.
A series of magnesium benzylalkoxide complexes, [LnMg(μ‐OBn)]2 ( 1 – 14 ) supported by NNO‐tridentate pyrazolonate ligands with various electron withdrawing‐donating subsituents have been synthesized and characterized. X‐ray crystal structural studies revealed that Complexes 1 – 3 , 5 , 7 , 9 , and 10 are dinuclear bridging through benzylalkoxy oxygen atoms with penta‐coordinated metal centers. All of these complexes acted as efficient initiators for the ring‐opening polymerization of L‐lactide and rac‐lactide. Based on kinetic studies, the activity of these metal complexes is significantly influenced by the electronic effect of the ancillary ligands with the electron‐donating substituents at the phenyl rings enhancing the polymerization rate. In addition, the “living” and “immortal” character of 6 has paved a way to synthesize as much as 40‐fold polymer chains of polylactides with a very narrow polydispersity index in the presence of a small amount of initiator. Among all of magnesium complexes, Complex 6 exhibits the highest stereoselectivity toward ring‐opening polymerization of rac‐lactide with Pr up to 88% in THF at 0 °C. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

10.
This Highlight gives an overview of the recent progress in development of new ring‐opening polymerizations (ROPs) and their applications to functional networked polymers in our group. The described ROPs involve thermally induced polymerization of 1,3‐benzoxazine, anionic alternating copolymerizations of epoxides and lactones, and those exhibiting equilibrium nature. These ROPs were successfully applied to the syntheses of the relevant networked polymers, leading to their distinctive features such as high thermal stability, small volume shrinkage, and selective decrosslinking ability, which enabled design and development of next generation materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4847–4858, 2009  相似文献   

11.
Thermally induced polymerizations of a series of 1,3‐benzoxazines with a variety of substituents on the nitrogen atom were investigated in detail, particularly in the following three aspects of the polymerization: (1) N‐alkyl‐1,3‐benzoxazines are much more reactive than N‐phenyl‐1,3‐benzoxazine. (2) The polymerization rate depended on the bulkiness of the N‐substituent. The bulkier the substituent was, the slower the polymerization was. (3) The polymerizations accompanied weight loss due to the elimination of the corresponding imine (R‐N = CH2), and its extent became larger when R was more bulky. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2777–2782, 2010  相似文献   

12.
Yarrowia lipolytica (YLL), Candida rugosa (CRL), and porcine pancreatic lipase (PPL) were employed successfully as catalysts in the enzymatic ring‐opening polymerization (ROP) of ε‐caprolactone in the presence of 1‐ethyl‐3‐methylimidazolium tetrafluoroborate ([EMIM][BF4]), 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([BMIM][BF4]), 1‐butylpyridinium tetrafluoroborate ([BuPy][BF4]), 1‐butylpyridinium trifluoroacetate ([BuPy][CF3COO]), 1‐ethyl‐3‐methylimidazolium nitrate ([EMIM][NO3]) ionic liquids. Poly(ε‐caprolactone)s (PCLs) with molecular weights (Mn) in the range of 300–9000 Da were obtained. 1H‐ and 13C‐NMR analyses on PCLs formed by YLL, CRL, and PPL showed asymmetric telechelic α‐hydroxy‐ω‐carboxylic acid end groups. Differences between CP‐MAS and MAS spectra are observed and discussed in terms of morphology. MALDI‐TOF spectra show the formation of at least seven species. Differential scanning calorimetry (DSC) and Wide Angle X‐Ray Scattering (WAXS) results demonstrate the high degree of crystallinity present in all the polyesters. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5792–5805, 2009  相似文献   

13.
Amphiphilic diblock copolymer polycaprolactone‐block‐poly(glycidyl methacrylate) (PCL‐b‐PGMA) was synthesized via enzymatic ring‐opening polymerization (eROP) and atom transfer radical polymerization (ATRP). Methanol first initiated eROP of ?‐caprolactone (?‐CL) in the presence of biocatalyst Novozyme‐435 under anhydrous conditions. The resulting monohydroxyl‐terminated polycaprolactone (PCL–OH) was subsequently converted to a bromine‐ended macroinitiator (PCL–Br) for ATRP by esterification with α‐bromopropionyl bromide. PCL‐b‐PGMA diblock copolymers were synthesized in a subsequent ATRP of glycidyl methacrylate (GMA). A kinetic analysis of ATRP indicated a living/controlled radical process. The macromolecular structures were characterized for PCL–OH, PCL–Br, and the block copolymers by means of nuclear magnetic resonance, gel permeation chromatography, and infrared spectroscopy. Differential scanning calorimetry and wide‐angle X‐ray diffraction analyses indicated that the copolymer composition (?‐CL/GMA) had a great influence on the thermal properties. The well‐defined, amphiphilic diblock copolymer PCL‐b‐PGMA self‐assembled into nanoscale micelles in aqueous solutions, as investigated by dynamic light scattering and transmission electron microscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5037–5049, 2007  相似文献   

14.
A series of Mannich base monophenol ligands [2,4‐tBu2‐6‐CH2NMe2‐PhOH ( HA ), 2,4‐tBu2‐6‐CH2NEt2‐PhOH ( HB ), 2,4‐tBu2‐6‐CH2Py‐PhOH ( HC ), 2‐tBu‐4‐Me‐6‐CH2Py‐PhOH ( HD ), 4‐tBu‐2,6‐(CH2Py)2‐PhOH ( HE )] were synthesized by Mannich reaction using phenol and formaldehyde reacting with secondary amine. A series of homoleptic lanthanide complexes [LaA3 ( 1 ), GdA3 ( 2 ), LaB3 ( 3 ), GdB3 ( 4 ), LaC3 ( 5 ), GdC3 ( 6 ), LaD3 ( 7 ), GdD3 ( 8 ), LaE3 ( 9 ), GdE3 ( 10 )] were prepared by amine elimination reactions of the ligands with Ln[N(SiMe3)2]3 (Ln = La, Gd). Complexes 1 , 3 , 5 , 7 and 9 were all characterized using NMR spectra, and the structures of complexes 3 and 5 were determined using single‐crystal X‐ray diffraction. Complexes 3 and 5 are isostructural, and the lanthanum center exhibits a distorted octahedral geometry, in which the O(1), O(2) and O(3) atoms occupy three positions and N(1), N(2) and N(3) atoms occupy the other three positions. All complexes were characterized using elemental analysis and infrared spectra. The catalytic properties of complexes 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 for the ring‐opening polymerization of ε‐caprolactone were studied, and the results show that all complexes are efficient initiators for this ring‐opening polymerization reaction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Thermally induced ring‐opening polymerization of monofunctional N‐allyl‐1,3‐benzoxazine 1a was compared with that of N‐(n‐propyl)‐1,3‐benzoxazine 1b to clarify an unexpected effect of allyl group to promote the polymerization, that is, in spite of the comparable bulkiness of allyl group to n‐propyl group, the polymerization of 1a was much faster than that of 1b . Such a difference in polymerization rate was also observed similarly in the comparison of thermally induced polymerization of a bifunctional N‐allyl‐benzoxazine 2a with that of a bifunctional N‐(n‐propyl) analogue 2b . These observations implied a certain contribution of an electron‐rich C? C double bond of the N‐ally group to promotion of the ring‐opening reaction of 1,3‐benzoxazine into the corresponding zwitterionic species, which would involve a mechanism to stabilize the cationic part of the zwitterionic species based on “neighboring group participation” of the C? C double bond. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

16.
A novel miktofunctional initiator ( 1 ), 2‐hydroxyethyl 3‐[(2‐bromopropanoyl)oxy]‐2‐{[(2‐bromopropanoyl)oxy]methyl}‐2‐methyl‐propanoate, possessing one initiating site for ring‐opening polymerization (ROP) and two initiating sites for atom transfer radical polymerization (ATRP), was synthesized in a three‐step reaction sequence. This initiator was first used in the ROP of ?‐caprolactone, and this led to a corresponding polymer with secondary bromide end groups. The obtained poly(?‐caprolactone) (PCL) was then used as a macroinitiator for the ATRP of tert‐butyl acrylate or methyl methacrylate, and this resulted in AB2‐type PCL–[poly(tert‐butyl acrylate)]2 or PCL–[poly(methyl methacrylate)]2 miktoarm star polymers with controlled molecular weights and low polydispersities (weight‐average molecular weight/number‐average molecular weight < 1.23) via the ROP–ATRP sequence. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2313–2320, 2004  相似文献   

17.
Polyesters constitute an important class of materials for in vivo biomedical applications. Poly(?‐caprolactone) (PCL) is a hydrophobic biodegradable polyester which is employed to a lesser extent in drug delivery applications due to its rather limited range of physicochemical characteristics. Here, we present a new paradigm for the synthesis of functionalized PCL via copolymerization of caprolactone with α,ω‐epoxy esters. Ethyl 2‐methyl‐4‐pentenoate oxide was used as a monomer which was copolymerized with ?‐caprolactone to yield random copolymers of poly(?‐caprolactone‐co‐ethyl‐2‐methyl‐4‐pentenoate oxide). The reaction conditions were optimized to generate functionalization greater than 25%. The use of ester‐epoxides favors a statistical and uniform distribution of monomer along the polymer backbone, which while preserving some of the key properties of PCL such as glass transition that is below room temperature, allows the tailoring of the melting behavior of PCL. The strategy presented herein opens up new avenues for engineering PCL properties for biomedical applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3375–3382  相似文献   

18.
1,3‐Benzoxazine monomers having ammonium salt of carboxylic acid have been developed. These 1,3‐benzoxazines 1a and 1b were easily synthesized from the corresponding tetrabutylammonium salts of glycine and β‐alanine, respectively. The glycine‐derived benzoxazine 1a exhibited remarkably high reactivity, which allowed its thermally induced ring‐opening polymerization in bulk at 100 °C, at which N‐methyl‐1,3‐benzoxazine 1d did not undergo the polymerization at all. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
Three controlled/living polymerization processes, namely atom transfer radical polymerization (ATRP), ring‐opening polymerization (ROP) and iniferter polymerization, and photoinduced radical coupling reaction were combined for the preparation of ABCBD‐type H‐shaped complex copolymer. First, α‐benzophenone functional polystyrene (BP‐PS) and poly(methyl methacrylate) (BP‐PMMA) were prepared independently by ATRP. The resulting polymers were irradiated to form ketyl radicals by hydrogen abstraction of the excited benzophenone moieties present at each chain end. Coupling of these radicals resulted in the formation of polystyrene‐b‐poly(methyl methacrylate) (PS‐b‐PMMA) with benzpinacole structure at the junction point possessing both hydroxyl and iniferter functionalities. ROP of ε‐caprolactone (CL) by using PS‐b‐PMMA as bifunctional initiator, in the presence of stannous octoate yielded the corresponding tetrablock copolymer, PCL‐PS‐PMMA‐PCL. Finally, the polymerization of tert‐butyl acrylate (tBA) via iniferter process gave the targeted H‐shaped block copolymer. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4601–4607  相似文献   

20.
In this work, ring opening insertion polymerization (ROIP) of ε‐caprolactone (ε‐CL) using a series of hydrogen phosphonates (H‐phosphonates) as initiators was investigated. The ROIP occurred by a coordination‐insertion mechanism containing two steps. First, the carbonyl carbon was attacked by the phosphorus atom of the H‐phosphonate tautomerization (a phosphine‐like structure) and the acyl‐oxygen bond was broken. An intermediate was formed by the coordination of the former carbonyl carbon and acyl‐oxygen of ε‐CL to phosphorus atom. Then the phosphorus‐alkoxide of H‐phosphonate was cleavaged to form acyl‐alkoxide bond. Poly(ε‐caprolactone) (PCL)‐inserted H‐phosphonates (PCL‐HPs), which was not only the product of the occurred ROIP but also the initiator for the next ROIP, were produced. After 60 min of microwave irradiation (510 W), PCL with a number‐average molar mass of 7800 g/mol and monomer conversion over 92% was obtained. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6214–6222, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号