首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, maghemite (γ‐Fe2O3) nanoparticles were initially synthesized via chemical co‐precipitation and then deposited by spray pyrolysis as thin films on white glass substrates. The thin films were annealed for 8 h at 400, 450, 500, 550, and 600 °C in an oven. The structural studies of maghemite nanoparticles were carried out using X‐ray diffractometer. Structural properties that we investigated by X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, SEM, and Energy dispersive X‐ray analysis (EDS). Optical properties of the samples were also investigated by ultraviolet‐visible (UV–vis) spectroscopy. The results showed that maghemite nanoparticles have crystalline structure with domain that increases in size with increasing annealing temperature. The optical band gap values were found to reduce from 2.9 to 2.4 eV with increase in annealing temperature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Fluorine-doped TiO2 thin films featuring columnar structure were prepared on fluorine-doped tin oxide (SnO2:F) substrate using a sol–gel method. The F doping ratios were varied in the range of 0–8 %. The effect of [F]/[Ti + F] ratio on the structural, morphological, optical, photocatalytic and low-emissivity properties has been investigated in detail. X-ray diffraction studies revealed that all the composited films are mainly composed of anatase TiO2 and rutile SnO2 without other phases. The prepared TiO2:F films possessed the columnar morphology with the single layer thickness ranging from 28 to 31 nm. The best photocatalytic activity was obtained for the films with 4 % F doping ratio which is mainly attributed to the highest crystallization and crystallite size. The transmission and hemispherical emissivity of the composite films could still reach approximately 70 % and 0.20, which match the requirements of the Chinese National Standard (GB/T18915.2-2002), promoting the films for the practical applications.  相似文献   

3.
Dip coated vacuum annealed zinc tin oxide thin films on soda lime silica glass have been deposited from the precursor sols containing zinc acetate dihydrate and tin (IV) chloride pentahydrate (Zn:Sn = 67:33, atomic ratio in percentage) in 2-methoxy ethanol by varying sol pH (0.85–5.5). Crystallinity, morphology, optical and photocatalytic properties of the films strongly depend on sol pH. Measurement of grazing incidence X-ray diffraction confirms the presence of hexagonal nano ZnO in the films derived from the sols of pH < 5.5. Film crystallinity deteriorates on increasing sol pH and the film deposited from the sol of pH 5.5 shows XRD amorphous but the selected area diffraction pattern and HRTEM image evidence the presence of nano Zn2SnO4 (size, 5–6 nm). Direct band gap energy of films increases on increasing sol pH. To visualize the film surface microstructure, FESEM study has been done and a rod-like surface feature is revealed in the film deposited from the sol of pH 2.85. A dependence of precursor sol pH on the photocatalytic activity of films towards degradation of Rhodamine 6G dye under UV (254 nm) irradiation is found and the highest decomposition rate constant, ‘k’ value is obtained from the film prepared from the sol of pH 5.5. The presence of zinc deficient nano Zn2SnO4 in the film may consider for generating the highest ‘k’ value. We also measure gelling time, viscosity of sols as well as UV and FTIR studies on the films and propose chemical reactions.  相似文献   

4.
A series of tin‐doped hydroxypropyl cellulose (HPC) lyotropic liquid crystal (LC) was synthesized using a simple process and their properties were characterized using selective reflection, wide‐angle X‐ray diffraction (WAXD), and the band texture observed under polarized optical microscope. The present preparation is applicable for mass production using large substrate with low cost HPC. A cholesteric lyotropic LC phase was observed for the hybrid solution with higher than 40 wt % HPC. After sol–gel condensation, the HPC‐Sn hybrid LC films were calcined at 400 °C and the as‐prepared product was determined to obtain tin dioxide (SnO2) which was characterized using WAXD. The iridescent color and ~2 nm structure seen after the condensation disappeared in the as‐prepared SnO2. Scanning electronic microscope images of the SnO2 showed that the HPC content in the HPC‐Sn hybrid played an important role in controlling the SnO2 morphology. A spectrum of relatively monochromatic extreme ultraviolet (13.5 nm) emission was measured in the as‐prepared SnO2 in comparison with bulk tin and inverse opal SnO2. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4566–4576, 2009  相似文献   

5.
Nanostructured TiO2–SnO2 thin films and powders were prepared by a facile aqueous particulate sol–gel route. The prepared sols showed a narrow particle size distribution with hydrodynamic diameter in the range 17.2–19.3 nm. Moreover, the sols were stable over 5 months, since the constant zeta potential was measured during this period. The effect of Sn:Ti molar ratio was studied on the crystallisation behaviour of the products. X-ray diffraction analysis revealed that the powders were crystallised at the low temperature of 400 °C containing anatase-TiO2, rutile-TiO2 and cassiterite-SnO2 phases, depending on annealing temperature and Sn:Ti molar ratio. Furthermore, it was found that SnO2 retarded the anatase to rutile transformation up to 800 °C. The activation energy of crystallite growth was calculated in the range 0.96–6.87 kJ/mol. Transmission electron microscope image showed that one of the smallest crystallite sizes was obtained for TiO2–SnO2 binary mixed oxide, being 3 nm at 600 °C. Field emission scanning electron microscope analysis revealed that the deposited thin films had nanostructured morphology with the average grain size in the range 20–40 nm at 600 °C. Thin films produced under optimized conditions showed excellent microstructural properties for gas sensing applications. They exhibited a remarkable response towards low concentrations of CO gas at low operating temperature of 200 °C, resulting in increased thermal stability of sensing films as well as a decrease in their power consumption.  相似文献   

6.
We present recent studies on amorphous and crystalline TiO2 resistive switching nonvolatile memory devices. A chemical sol–gel process is demonstrated for preparing amorphous and crystalline TiO2 thin films with different calcination temperature. Glass/SnO2:F/TiO2/Cu sandwich structures are fabricated and their current–voltage characteristics are examined. We found that the switching voltage goes from 4.8 to 3.5 V and the current compliance also drops from 10 to 1 mA when calcination temperatures increased. Smooth surface of TiO2 thin films are also observed by XRD, AFM and XPS.  相似文献   

7.
Copper‐doped iron sulfide (CuxFe1?xS, x = 0.010–0.180) thin films were deposited using a single‐source precursor, Cu(LH)2Cl2 (LH = monoacetylferrocene thiosemicarbazone), by aerosol‐assisted chemical vapor deposition technique. The Cu‐doped FeS thin films were deposited at different substrate temperatures, i.e. 250, 300, 350, 400 and 450 °C. The deposited thin films were characterized by X‐ray diffraction (XRD) patterns, Raman spectra, scanning electron microscopy, energy dispersive X‐ray analysis (EDX) and atomic force microscopy. XRD studies of Cu‐doped FeS thin films at all the temperatures revealed formation of single‐phase FeS structure. With increasing substrate temperature from 250 to 450 °C, there was change in morphology from wafer‐like to cylindrical plate‐like. EDX analysis showed that the doping percentage of copper increased as the substrate temperature increased from 250 to 450 °C. Raman data supports the doping of copper in FeS films. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The vanadium dioxide (VO2) thin films were deposited on silicon (100) substrate using the pulsed laser deposition technique. The thin films were deposited at different substrate temperatures (500°C, 600°C, 700°C, and 800°C) while keeping all the other parameters constant. X‐ray diffraction confirmed the crystalline VO2 (B) and VO2 (M) phase formation at different substrate temperatures. X‐ray photoelectron spectroscopy analysis showed the presence of V4+ and V5+ charge states in all the deposited thin films which confirms that the deposited films mainly consist of VO2 and V2O5. An increase in the VO2/V2O5 ratio has been observed in the films deposited at higher substrate temperatures (700°C and 800°C). Scanning electron microscope micrographs revealed different surface morphologies of the thin films deposited at different substrate temperatures. The electrical properties showed the sharp semiconductor to metal transition behavior with approximately 2 orders of magnitude for the VO2 thin film deposited at 800°C. The transition temperature for heating and cooling cycles as low as 46.2°C and 42°C, respectively, has been observed which is related to the smaller difference in the interplanar spacing between the as‐deposited thin film and the standard rutile VO2 as well as to the lattice strain of approximately −1.2%.  相似文献   

9.
In present study, ZnO/SnO2/ZnO/SnO2/ZnO multi–layer, ZnO/SnO2/ZnO triple layer and ZnO single layer films have been deposited on glass substrate by sol–gel dip–coating technique. The structural and optical properties of thin films have been investigated by X-ray diffractometer, UV–visible, photoluminescence spectroscopies and scanning electron microscopy. The structural analysis reveals structural inhomogeneities and different crystallite growth processes as function of number of deposited layers. A comparison between photocatalytic activity of zinc oxide samples toward photodegradation of phenol, 4-aminophenol and 4-nitrophenol has been performed under UV light irradiation. Experiments were conducted to study the effects of operational parameters on the degradation rate. Pseudo-first-order photodegradation kinetics was observed on all films and the reaction constants were determined. The results showed that the photocatalytic activity of ZnO multi–layer film was superior to that of the ZnO single- and triple-layer films. Differences in film efficiencies can be attributed to differences in crystallinity, surface morphology, defect concentration of oxygen vacancy and to presence of SnO2 sublayer that may act as trap for electrons generated in the ZnO layer thus preventing electron–hole recombination. The results reveal that SnO2 hetrojunction layers improve crystalline quality, optical and photocatalytic properties of ZnO multilayered films.  相似文献   

10.
In this paper, we have analyzed the effect of the rhodium surface modification on the surface state of SnO2 films. SnO2 films, subjected for the surface modification, were deposited by spray pyrolysis, while Rh was deposited by using a microelectron beam evaporation. The thickness of the Rh coating varied in the range 0 to 0.1 monolayer. An explanation of the observed effects was proposed. Basing on the results of X‐ray photoelectron spectroscopy, it was assumed that at a small thickness of the rhodium covering, Rh was in a the well‐dispersed state, close to atomically dispersed state. The growth in the size of the nanoparticles began mainly when the thickness of the Rh covering exceeeded 0.01 monolayer. The size of clusters did not exceed 0.5 to 1.0 nm.  相似文献   

11.
In this paper, quaternary chalcogenide Cu2FeSnS4 (CFTS) thin films were synthesized by spray pyrolysis using multilayer deposition technique in which the number (N) of sequential deposition runs (DR) is N = 1, 2, 3 and 4. The delivered volume in each sample is (N × 300 ml). Correspondingly, samples are named CFTS-N. Chemical composition, morphological, structural, optical and electrical properties were characterized using dispersive X-ray spectrometry (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, spectrophotometer and Hall Effect measurements. XRD and Raman spectroscopy show a purer phase and better crystalline quality of CFTS-3 than other films. Average particle size increases with DR and reaches a maximum value of about 60 nm for N = 3. Optical results show high absorption coefficient value about 105 cm−1 in visible range, with an optical band gap of about 1.47 eV. Electrical resistivity of CFTS-3 equals to 5.82 10−3 Ω cm which is the lowest value of these four samples. We have investigated the photocatalysis activity of various thin films by measuring the degradation of methylene blue (MB) and Rhodamine (RhB) as pollutant dyes. In particular we have compared the candidates: CFTS-3/SnO2:F, CFTS-3/In2S3 and CFTS-3/In2S3/SnO2:F. Under sun light irradiation, CFTS-3/In2S3/SnO2:F heterojunction exhibits the best photodegradation rate (96%) of MB dye.  相似文献   

12.
Perovskite (K, Na)NbO3 (KNN) thin films (~100 nm) were prepared by sol–gel/spin coating process on Pt/SiO2/Si substrates and annealed at 650 °C. The structural properties of KNN films were confirmed by X‐ray diffraction analysis (XRD), Raman spectroscopy and scanning electron, transmission electron and atomic force microscopy (SEM, TEM and AFM) analysis. Pure perovskite phase of K0.65Na0.35NbO3 in nonstoichiometric composition with monoclinic symmetry in film was revealed. Uniform homogeneous microstructure of KNN film with the roughness (~6.9 nm) contained spherical particles (~50–90 nm). Nanoindentation technique was used to characterize the mechanical properties of KNN films. Elastic modulus and hardness of Pt, SiO2 and KNN thin films were calculated from their composite values of KNN/Pt/SiO2/Si film/substrate system. The modulus and hardness of KNN film (71 and 4.5 GPa) were lower in comparison with SiO2 (100 and 7.5 GPa). Pt film (~30 nm) did not influence the composite modulus, but had effect on hardness of KNN film. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
A new single‐source precursor, [SnCl4{OC(H)OC2H5}2], prepared by treating tin tetrachloride with ethyl formate (1:2 ratio) was developed for the deposition of tin oxide thin films on glass substrates. The compound [SnCl4{OC(H)OC2H5}2] is highly volatile and provides very high growth rates (up to 100Å s?1 at 560 °C) in an atmospheric pressure chemical vapor deposition (APCVD) reactor. More significantly, the compound does not decompose to tin oxide below 320 °C, thereby minimizing the formation of particles in the vapor above the growing tin oxide film. To prepare highly conducting fluorine doped tin oxide (SnO2:F) films 2,2,2‐trifluoroethyl trifluoroacetate was used as the source of fluoride. High quality SnO2:F films were deposited at 560 °C with a flow rate of 2 mL fluoride reagent hr?1; typical film properties are resistivity of 5.9 X 10?4 Ω cm, Hall mobility of 27.3 cm2 V?1 s?1, carrier concentration of 3.9 X 1020 cm?3 and percent transmission ranging from 86 to 88 %. The best films of SnO2:F possess transparencies as high as 90 % (750 nm), sheet resistances as low as 7 Ω sq?1 and Haacke's figure of merit as high as 29 X 10?3 (750 nm). The newly developed APCVD reactor and the chemistry were optimized with respect to structural, electrical and optical properties of the films by adjusting the substrate temperature, gas flow rates and the amount of fluoride present in the vapor stream. Growth rates with respect to deposition time, substrate temperature and flow rates of precursors were found to be similar for both undoped (SnO2) and doped (SnO2:F) samples. The SnO2:F films possess larger grains than the SnO2 which may account for the lower resistivity and the higher mobility in the SnO2:F samples.  相似文献   

14.
Three‐dimensional (3D) reticular SnO2 thin films deposited on copper and stainless steel substrates were prepared by the electrostatic spray deposition (ESD) technique. The 3D reticular SnO2 film exhibit a high reversible capacity near 300 mAh g?1 up to the 50th cycle.  相似文献   

15.
The lithiated/delithiated vanadium pentoxide films deposited by sol‐gel spin coating on indium tin oxide–coated glass substrates were analyzed by sputter‐induced photon spectroscopy, X‐ray diffraction, and optical absorption techniques. First, it is shown that the crystalline structure of V2O5 after intercalation remains practically unchanged. Particularly, in the optical spectra during 5 keV Kr+ ion bombardment of clean, intercalated, and deintercalated V2O5 films, a series of sharp lines and unexpected continuum radiation were observed and well explained. It is also demonstrated that the intercalation and deintercalation of lithium have strong influences on various characteristics of pentoxide vanadium. The interpretations of the obtained results in the 3 experiments—X‐ray diffraction, sputter‐induced photon spectroscopy, and optical absorption techniques—are coherent and complement each other.  相似文献   

16.
《中国化学会会志》2018,65(7):861-867
We report the fabrication of Pt@SnO2 nanoparticles using a sol–gel method. These nanoparticles are used as a sensing material. The structural and morphological characterization of the prepared Pt@SnO2 nanoparticles was performed using ultraviolet–visible spectroscopy, X‐ray diffraction, transmission electron microscopy, and energy‐dispersive X‐ray spectroscopy. The sensor responses of SnO2 and 1 wt% Pt/SnO2 to 1% hydrogen gas (H2) were 1.3 and 1.9, respectively. The sensor response of a Pt@SnO2 core–shell sensor increased to 5.1 at room temperature; it improved by 3.9 times compared to SnO2 and by 2.7 times compared to 1% Pt/SnO2 in sensing 1% H2. The response time for the prepared Pt@SnO2 sensor was also shortened by 2.0 and 1.4 times compared to SnO2 and 1 wt% Pt/SnO2, respectively. The sensor response increased rapidly from 1.4 to 5.1, with an increase in H2 concentration from 800 to 10,000 ppm (1%). We investigated the H2‐sensing mechanism of Pt@SnO2.  相似文献   

17.
Nano-sized noble metal nanoparticles doped dielectric composite films with large third-order nonlinear susceptibility due to the confinement and the enhancement of local field were considered to be applied for optical information processing devices, such as optical switch or all optical logical gates. In this paper, sol–gel titania thin films doped with gold nanoparticles (AuNPs, ~10 nm in average size) were prepared. AuNPs were firstly synthesized from HAuCl4 in aqueous solution at ~60 °C, using trisodium citrate as the reducing agent, polyvinylpyrrolidone as the stable agent; then the particle size and optical absorption spectra of the AuNPs in aqueous solutions were characterized by transmitting electron microscopy and UV–Vis–NIR spectrometry. Sol–gel 2AuNPs–100TiO2 (in %mol) thin films (5 layers, ~1 μm in thickness) were deposited on silica glass slides by multilayer dip-coating. After heat-treated at 300–1,000 °C in air, the AuNPs–TiO2 thin films were investigated by X-ray diffraction, scanning electron microscopy and atomic force microscopy. The nonlinear optical properties of the AuNPs–TiO2 thin films were measured with the Z-scan technique, using a femtosecond laser (200 fs) at the wavelength of 800 nm. The third-order nonlinear refractive index and nonlinear absorption coefficient of 2AuNPs–100TiO2 films were at the order of 10?12 cm2/W, and the order of 10?6 cm/W, respectively, and the third-order optical nonlinear susceptibility χ(3) was ~6.88 × 10?10 esu.  相似文献   

18.
A single molecular heterobimetallic complex, [Co2Ti(μ3‐O)(TFA)6(THF)3] (1) [TFA = trifluoroacetate, THF = tetrahydrofuran], was synthesized, structurally and spectroscopically characterized and implemented as a single‐source precursor for the preparation of CoTiO3–CoO composite thin films by aerosol‐assisted chemical vapour deposition (AACVD). The precursor complex was prepared by interaction of Co(OAc)2.4H2O [OAc = (CH3COO?)] with Ti(iso‐propoxide)4 in the presence of trifluoroacetic acid in THF, and was analysed by melting point, CHN, FT‐IR, single‐crystal X‐ray diffraction and thermogravimetric analysis. The precursor complex thermally decomposed at 480 °C to give a residual mass corresponding to a CoTiO3–CoO composite material. Good‐quality crystalline CoTiO3–CoO composite thin films deposited at 500 °C by AACVD and characterized through powder X‐ray diffraction and scanning electron microscopy/energy‐dispersive X‐ray spectroscopy show that the crystallites have a rose‐flower‐like morphology with an average petal size in the range of 2–6 µm. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Radio frequency magnetron sputtering technique has been used to deposit Cu‐doped ZnS thin films on glass and n‐type Si(100) substrates at room temperature. Crystalline structure, surface morphology, and elemental oxidation states have been studied by X‐ray diffraction, field emission scanning electron microscopy, atomic force microscopy, and X‐ray photoelectron spectroscopy. Ultraviolet–visible spectroscopy has been employed to measure the transmittance, reflectance, and absorbance properties of coated films. The deposited thin films crystallize in zinc blende or sphalerite phases as proved by X‐ray diffraction analysis. The intensity of diffraction peaks decreases with increasing the dopant concentrations. The predominant diffraction peak related to (111) plane of ZnS is observed at 28.52° along with other peaks. The peak positions are shifted to higher angles with an increase of Cu concentrations. X‐ray photoelectron spectroscopy studies show that Cu is present in +1 oxidation state. Transmittance, reflectance, and absorbance properties of the deposited films have a slight variation with dopant concentrations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
The effect of post‐deposition annealing on surface morphology and gas sensing properties of palladium phthalocyanine (PdPc) nanostructured thin films has been studied. PdPc thin films were deposited on polyborosilicate substrate by thermal evaporation technique at room temperature. The surface morphology of thin films was investigated by SEM, X‐ray diffraction, and optical absorption. X‐ray diffraction patterns showed a phase transition from α to β based on post‐deposition annealing at temperatures above 200 °C. The SEM and optical absorption confirmed that annealing strongly influenced the surface morphology of nanostructured thin films. Sandwich devices (Au|PdPc|Al) were fabricated and exposed to different concentrations of NO2 and NH3 as oxidizing and reducing gases at different temperatures, and the sensitivity of devices were obtained versus gases. Obtained results showed α‐PdPc thin film devices had higher sensitivity in comparison with devices in β‐phase. In particular, it was found that the sensitivity of devices is temperature dependent and the best operating temperature range of devices was measured at about 90–100 °C. Devices showed good reversibility, response, and recovery time at room temperature. Finally, the stability of sensors was investigated for a period of about 1 year; results showed that the sensors were stable for 2 months and lost about 30% of their sensitivity after 1 year. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号