首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synchrotron radiation inline phase‐contrast imaging combined with computed tomography (SR‐inline‐PCI‐CT) offers great potential for non‐invasive characterization and three‐dimensional visualization of fine features in weakly absorbing materials and tissues. For cartilage tissue engineering, the biomaterials and any associated cartilage extracellular matrix (ECM) that is secreted over time are difficult to image using conventional absorption‐based imaging techniques. For example, three‐dimensional printed polycaprolactone (PCL)/alginate/cell hybrid constructs have low, but different, refractive indices and thicknesses. This paper presents a study on the optimization and utilization of inline‐PCI‐CT for visualizing the components of three‐dimensional printed PCL/alginate/cell hybrid constructs for cartilage tissue engineering. First, histological analysis using Alcian blue staining and immunofluorescent staining assessed the secretion of sulfated glycosaminoglycan (GAGs) and collagen type II (Col2) in the cell‐laden hybrid constructs over time. Second, optimization of inline PCI‐CT was performed by investigating three sample‐to‐detector distances (SDD): 0.25, 1 and 3 m. Then, the optimal SDD was utilized to visualize structural changes in the constructs over a 42‐day culture period. The results showed that there was progressive secretion of cartilage‐specific ECM by ATDC5 cells in the hybrid constructs over time. An SDD of 3 m provided edge‐enhancement fringes that enabled simultaneous visualization of all components of hybrid constructs in aqueous solution. Structural changes that might reflect formation of ECM also were evident in SR‐inline‐PCI‐CT images. Summarily, SR‐inline‐PCI‐CT images captured at the optimized SDD enables visualization of the different components in hybrid cartilage constructs over a 42‐day culture period.  相似文献   

2.
A new data collection strategy for performing synchrotron energy‐dispersive X‐ray diffraction computed tomography has been devised. This method is analogous to angle‐dispersive X‐ray diffraction whose diffraction signal originates from a line formed by intersection of the incident X‐ray beam and the sample. Energy resolution is preserved by using a collimator which defines a small sampling voxel. This voxel is translated in a series of parallel straight lines covering the whole sample and the operation is repeated at different rotation angles, thus generating one diffraction pattern per translation and rotation step. The method has been tested by imaging a specially designed phantom object, devised to be a demanding validator for X‐ray diffraction imaging. The relative strengths and weaknesses of the method have been analysed with respect to the classic angle‐dispersive technique. The reconstruction accuracy of the method is good, although an absorption correction is required for lower energy diffraction because of the large path lengths involved. The spatial resolution is only limited to the width of the scanning beam owing to the novel collection strategy. The current temporal resolution is poor, with a scan taking several hours. The method is best suited to studying large objects (e.g. for engineering and materials science applications) because it does not suffer from diffraction peak broadening effects irrespective of the sample size, in contrast to the angle‐dispersive case.  相似文献   

3.
Gold nanoparticles are excellent intracellular markers in X‐ray imaging. Having shown previously the suitability of gold nanoparticles to detect small groups of cells with the synchrotron‐based computed tomography (CT) technique both ex vivo and in vivo, it is now demonstrated that even single‐cell resolution can be obtained in the brain at least ex vivo. Working in a small animal model of malignant brain tumour, the image quality obtained with different imaging modalities was compared. To generate the brain tumour, 1 × 105 C6 glioma cells were loaded with gold nanoparticles and implanted in the right cerebral hemisphere of an adult rat. Raw data were acquired with absorption X‐ray CT followed by a local tomography technique based on synchrotron X‐ray absorption yielding single‐cell resolution. The reconstructed synchrotron X‐ray images were compared with images obtained by small animal magnetic resonance imaging. The presence of gold nanoparticles in the tumour tissue was verified in histological sections.  相似文献   

4.
代秋声  漆玉金 《物理学报》2010,59(2):1357-1365
针孔单光子发射计算机断层(SPECT)成像的空间分辨率通常是根据Anger经验公式来进行估算,与实际测量存在较大偏差.本文通过对针孔成像的物理过程进行分析,提出了一个近似度更高的计算公式.利用精确的蒙特卡罗方法模拟针孔SPECT成像,采用OSEM(ordered subsets expectation maximization)算法对投影数据进行图像重建,并与模具实验进行比较,验证了理论公式的适用性.同时还讨论了体素尺寸、几何映射获取投影矩阵以及探测器尺寸与成像物体尺寸比值对断层图像空间分辨率的影响.实验结果显示,该理论公式所估算的空间分辨率比实验值平均偏小约10%,而Anger经验公式所估算的空间分辨率比实验值平均偏大约60%.因此,该理论公式能更好地估算针孔SPECT成像的空间分辨率,可为针孔SPECT系统的设计和使用提供有价值的参考.  相似文献   

5.
A series of computed microtomography experiments are reported which were performed by using a third‐generation synchrotron radiation source on volcanic rocks from various active hazardous volcanoes in Italy and other volcanic areas in the world. The applied technique allowed the internal structure of the investigated material to be accurately imaged at the micrometre scale and three‐dimensional views of the investigated samples to be produced as well as three‐dimensional quantitative measurements of textural features. The geometry of the vesicle (gas‐filled void) network in volcanic products of both basaltic and trachytic compositions were particularly focused on, as vesicle textures are directly linked to the dynamics of volcano degassing. This investigation provided novel insights into modes of gas exsolution, transport and loss in magmas that were not recognized in previous studies using solely conventional two‐dimensional imaging techniques. The results of this study are important to understanding the behaviour of volcanoes and can be combined with other geosciences disciplines to forecast their future activity.  相似文献   

6.
Dental burs are used extensively in dentistry to mechanically prepare tooth structures for restorations (fillings), yet little has been reported on the bur debris left behind in the teeth, and whether it poses potential health risks to patients. Here it is aimed to image dental bur debris under dental fillings, and allude to the potential health hazards that can be caused by this debris when left in direct contact with the biological surroundings, specifically when the debris is made of a non‐biocompatible material. Non‐destructive micro‐computed tomography using the BioMedical Imaging & Therapy facility 05ID‐2 beamline at the Canadian Light Source was pursued at 50 keV and at a pixel size of 4 µm to image dental bur fragments under a composite resin dental filling. The bur's cutting edges that produced the fragment were also chemically analyzed. The technique revealed dental bur fragments of different sizes in different locations on the floor of the prepared surface of the teeth and under the filling, which places them in direct contact with the dentinal tubules and the dentinal fluid circulating within them. Dispersive X‐ray spectroscopy elemental analysis of the dental bur edges revealed that the fragments are made of tungsten carbide–cobalt, which is bio‐incompatible.  相似文献   

7.
In vivo microstructures of the affected feet of collagen‐induced arthritic (CIA) mice were examined using a high‐resolution synchrotron radiation (SR) X‐ray refraction technique with a polychromatic beam issued from a bending magnet. The CIA models were obtained from six‐week‐old DBA/1J mice that were immunized with bovine type II collagen and grouped as grades 0–3 according to a clinical scoring for the severity of arthritis. An X‐ray shadow of a specimen was converted into a visual image on the surface of a CdWO4 scintillator that was magnified using a microscopic objective lens before being captured with a digital charge‐coupled‐device camera. Various changes in the joint microstructure, including cartilage destruction, periosteal born formation, articular bone thinning and erosion, marrow invasion by pannus progression, and widening joint space, were clearly identified at each level of arthritis severity with an equivalent pixel size of 2.7 µm. These high‐resolution features of destruction in the CIA models have not previously been available from any other conventional imaging modalities except histological light microscopy. However, thickening of the synovial membrane was not resolved in composite images by the SR refraction imaging method. In conclusion, in vivo SR X‐ray microscopic imaging may have potential as a diagnostic tool in small animals that does not require a histochemical preparation stage in examining microstructural changes in joints affected with arthritis. The findings from the SR images are comparable with standard histopathology findings.  相似文献   

8.
Hydrogel‐based cardiac tissue engineering offers great promise for myocardial infarction repair. The ability to visualize engineered systems in vivo in animal models is desired to monitor the performance of cardiac constructs. However, due to the low density and weak X‐ray attenuation of hydrogels, conventional radiography and micro‐computed tomography are unable to visualize the hydrogel cardiac constructs upon their implantation, thus limiting their use in animal systems. This paper presents a study on the optimization of synchrotron X‐ray propagation‐based phase‐contrast imaging computed tomography (PCI‐CT) for three‐dimensional (3D) visualization and assessment of the hydrogel cardiac patches. First, alginate hydrogel was 3D‐printed into cardiac patches, with the pores filled by fibrin. The hydrogel patches were then surgically implanted on rat hearts. A week after surgery, the hearts including patches were excised and embedded in a soft‐tissue‐mimicking gel for imaging by using PCI‐CT at an X‐ray energy of 25 keV. During imaging, the sample‐to‐detector distances, CT‐scan time and the region of interest (ROI) were varied and examined for their effects on both imaging quality and radiation dose. The results showed that phase‐retrieved PCI‐CT images provided edge‐enhancement fringes at a sample‐to‐detector distance of 147 cm that enabled visualization of anatomical and microstructural features of the myocardium and the implanted patch in the tissue‐mimicking gel. For visualization of these features, PCI‐CT offered a significantly higher performance than the dual absorption‐phase and clinical magnetic resonance (3 T) imaging techniques. Furthermore, by reducing the total CT‐scan time and ROI, PCI‐CT was examined for lowering the effective dose, meanwhile without much loss of imaging quality. In effect, the higher soft tissue contrast and low‐dose potential of PCI‐CT has been used along with an acceptable overall animal dose to achieve the high spatial resolution needed for cardiac implant visualization. As a result, PCI‐CT at the identified imaging parameters offers great potential for 3D assessment of microstructural features of hydrogel cardiac patches.  相似文献   

9.
The efficiency of high‐resolution pixel detectors for hard X‐rays is nowadays one of the major criteria which drives the feasibility of imaging experiments and in general the performance of an experimental station for synchrotron‐based microtomography and radiography. Here the luminescent screen used for the indirect detection is focused on in order to increase the detective quantum efficiency: a novel scintillator based on doped Lu2SiO5 (LSO), epitaxially grown as thin film via the liquid phase epitaxy technique. It is shown that, by using adapted growth and doping parameters as well as a dedicated substrate, the scintillation behaviour of a LSO‐based thin crystal together with the high stopping power of the material allows for high‐performance indirect X‐ray detection. In detail, the conversion efficiency, the radioluminescence spectra, the optical absorption spectra under UV/visible‐light and the afterglow are investigated. A set‐up to study the effect of the thin‐film scintillator's temperature on its conversion efficiency is described as well. It delivers knowledge which is important when working with higher photon flux densities and the corresponding high heat load on the material. Additionally, X‐ray imaging systems based on different diffraction‐limited visible‐light optics and CCD cameras using among others LSO‐based thin film are compared. Finally, the performance of the LSO thin film is illustrated by imaging a honey bee leg, demonstrating the value of efficient high‐resolution computed tomography for life sciences.  相似文献   

10.
Controlling spontaneous emission (SE) is of fundamental importance to a diverse range of photonic applications including but not limited to quantum optics, low power displays, solar energy harvesting and optical communications. Characterized by photonic bandgap (PBG) property, three‐dimensional (3D) photonic crystals (PCs) have emerged as a promising synthetic material, which can manipulate photons in much the same way as a semiconductor does to electrons. Emission tunable nanocrystal quantum dots (QDs) are ideal point sources to be embedded into 3D PCs towards active devices. The challenge however lies in the combination of QDs with 3D PCs without degradation of their emission properties. Polymer materials stand out for this purpose due to their flexibility of incorporating active materials. Combining the versatile multi‐photon 3D micro‐fabrication techniques, active 3D PCs have been fabricated in polymer‐QD composites with demonstrated control of SE from QDs. With this milestone novel miniaturized photonic devices can thus be envisaged.  相似文献   

11.
12.
A full‐field hard X‐ray imaging beamline (BL‐4) was designed, developed, installed and commissioned recently at the Indus‐2 synchrotron radiation source at RRCAT, Indore, India. The bending‐magnet beamline is operated in monochromatic and white beam mode. A variety of imaging techniques are implemented such as high‐resolution radiography, propagation‐ and analyzer‐based phase contrast imaging, real‐time imaging, absorption and phase contrast tomography etc. First experiments on propagation‐based phase contrast imaging and micro‐tomography are reported.  相似文献   

13.
Phase‐contrast imaging provides enhanced image contrast and is important for non‐destructive evaluation of structural materials. In this paper, experimental results on in‐line phase‐contrast imaging using a synchrotron source (ELETTRA, Italy) for objects required in material science applications are discussed. Experiments have been carried out on two types of samples, pyrocarbon‐coated zirconia and pyrocarbon‐coated alumina microspheres. These have applications in both reactor and industrial fields. The phase‐contrast imaging technique is found to be very useful in visualizing and determining the coating thickness of pyrocarbon on zirconia and alumina microspheres. The experiments were carried out at X‐ray energies of 16, 18 and 20 keV and different object‐to‐detector distances. The results describe the contrast values and signal‐to‐noise ratio for both samples. A comprehensive study was carried out to determine the thickness of the pyrocarbon coating on zirconia and alumina microspheres of diameter 500 µm. The advantages of phase‐contrast images are discussed in terms of contrast and resolution, and a comparison is made with absorption images. The results show considerable improvement in contrast with phase‐contrast imaging as compared with absorption radiography.  相似文献   

14.
15.
In the present study the feasibility of applying synchrotron radiation to the morphological study of early‐stage lung cancer has been investigated. Lewis lung cancer was implanted and grown in a nude mouse for different periods, and imaged using phase‐contrast synchrotron X‐rays. Morphological differences were clearly shown between the normal lung and cancerous tissues at this early stage. Irregular and tortuous angiogenesis were found in the periphery region of the developing lung cancer. Results from this study indicate that synchrotron X‐rays can be used for imaging cancer development and progression with minimal invasion.  相似文献   

16.
The visualization of the vascular network in tumors down to the smallest vessels requires high spatial resolution and reasonable contrast. Stained corrosion casts of the microvasculature network guarantee superior X‐ray absorption contrast and highest reproduction fidelity. Tomography of a centimeter‐size tumor, however, is unfeasible at the spatial resolution needed to reveal the smallest vessels. Therefore, local tomography has been performed to visualize the smallest capillaries within the region of interest. These three‐dimensional data show the detailed morphology, but the reconstructed absorption coefficients obtained in local tomography differ substantially from the absorption coefficients retrieved from the less detailed global tomography data. This paper deals with the adaptation of local tomography data using the global data and considers two‐parameter histogram matching of the radiographs, sinogram extension, and multi‐parameter cupping correction. It is demonstrated that two‐parameter histogram matching of the radiographs already provides reasonable agreement. The change of the lens in front of the detector's camera, however, significantly affects the obtained local X‐ray absorption coefficients in the tomograms predominantly owing to the dissimilar point‐spread functions of the two configurations used, and much less to the fact that one of the data sets was acquired in a local geometry.  相似文献   

17.
An imaging system based on a polycapillary half‐focusing X‐ray lens (PHFXRL) and synchrotron radiation source has been designed. The focal spot size and the gain in power density of the PHFXRL were 22 µm (FWHM) and 4648, respectively, at 14.0 keV. The spatial resolution of this new imaging system was better than 5 µm when an X‐ray charge coupled device with a pixel size of 10.9 × 10.9 µm was used. A fossil of an ancient biological specimen was imaged using this system.  相似文献   

18.
Many published literature sources have described the histopathological characteristics of post‐traumatic syringomyelia (PTS). However, three‐dimensional (3D) visualization studies of PTS have been limited due to the lack of reliable 3D imaging techniques. In this study, the imaging efficiency of propagation‐based synchrotron radiation microtomography (PB‐SRµCT) was determined to detect the 3D morphology of the cavity and surrounding microvasculature network in a rat model of PTS. The rat model of PTS was established using the infinite horizon impactor to produce spinal cord injury (SCI), followed by a subarachnoid injection of kaolin to produce arachnoiditis. PB‐SRµCT imaging and histological examination, as well as fluorescence staining, were conducted on the animals at the tenth week after SCI. The 3D morphology of the cystic cavity was vividly visualized using PB‐SRµCT imaging. The quantitative parameters analyzed by PB‐SRµCT, including the lesion and spared spinal cord tissue area, the minimum and maximum diameters in the cystic cavity, and cavity volume, were largely consistent with the results of the histological assessment. Moreover, the 3D morphology of the cavity and surrounding angioarchitecture could be simultaneously detected on the PB‐SRµCT images. This study demonstrated that high‐resolution PB‐SRµCT could be used for the 3D visualization of trauma‐induced spinal cord cavities and provides valuable quantitative data for cavity characterization. PB‐SRµCT could be used as a reliable imaging technique and offers a novel platform for tracking cavity formation and morphological changes in an experimental animal model of PTS.  相似文献   

19.
The ability to achieve uniform stress in uniaxial compression tests of polycrystalline alumina is of significance for the calibration of piezospectroscopic coefficients as well as strength studies in ceramics. In this study high‐energy X‐rays were used to capture powder diffraction profiles over a half‐section of a polycrystalline alumina parallelepiped sample under an increasing uniaxial compressive load. The data were converted to strain and results were used for stress mapping of the sample. Stress maps from the study quantify the higher stresses at the sample–platen contact interface and reveal the evolution of the stress distribution in these specimens with load. For the geometry of the samples used, at the center section of the specimen the overall magnitudes of the compressive stresses were found to be 20% higher compared with the average expected theoretical stress based on the applied load and cross‐sectional area. The observed compressive stresses at the corners of the parallelepiped specimen were 62% higher and shear stresses were observed at the specimen interface to the load mechanism. The effects, seen at the interface, can lead to premature failure at these locations and can affect the accuracy of calibration of spectral peaks with stress as well as compression strength measurements. The results provide important information that can be used to establish guidelines on material and geometry considerations in developing compression tests on high‐strength ceramics.  相似文献   

20.
The application of a two‐dimensional photon‐counting detector based on a micro‐pixel gas chamber (µ‐PIC) to high‐resolution small‐angle X‐ray scattering (SAXS), and its performance, are reported. The µ‐PIC is a micro‐pattern gaseous detector fabricated by printed circuit board technology. This article describes the performance of the µ‐PIC in SAXS experiments at SPring‐8. A dynamic range of >105 was obtained for X‐ray scattering from a polystyrene sphere solution. A maximum counting rate of up to 5 MHz was observed with good linearity and without saturation. For a diffraction pattern of collagen, weak peaks were observed in the high‐angle region in one accumulation of photons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号