首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
As previously asserted, we have proposed a set of hypothetical molecular surfaces that possessed an extended hydrogen‐bonded network on one of the sides and hydrogen atoms on the opposite side. The uneven distribution of the OH groups (which increases the total dipole moment of the system) coupled to the partial positive charge of the hydrogen atoms creates charge pockets capable of trapping excess electrons. In this work we consider the ability of ammonia (NH3) in solvating excess electrons in charge pockets on molecular surfaces. The anions are stable with respect to vertical electron detachment, and serve as another example by which electrons can be solvated on molecular surfaces. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

2.
Redox chemistry is the cornerstone of various electrochemical energy conversion and storage systems, associated with ion diffusion process. To actualize both high energy and power density in energy storage devices, both multiple electron transfer reaction and fast ion diffusion occurred in one electrode material are prerequisite. The existence forms of redox ions can lead to different electrochemical thermodynamic and kinetic properties. Here, we introduce novel colloid system, which includes multiple varying ion forms, multi‐interaction and abundant redox active sites. Unlike redox cations in solution and crystal materials, colloid system has specific reactivity‐structure relationship. In the colloidal ionic electrode, the occurrence of multiple‐electron redox reactions and fast ion diffusion leaded to ultrahigh specific capacitance and fast charge rate. The colloidal ionic supercapattery coupled with redox electrolyte provides a new potential technique for the comprehensive use of redox ions including cations and anions in electrode and electrolyte and a guiding design for the development of next‐generation high performance energy storage devices.  相似文献   

3.
We have previously computed a set of hypothetical molecular surfaces, which formed charge pockets that were capable of excess electron entrapment. These charge pockets arose due to the fact that the molecular surfaces possessed an extended network of OH groups on one side of the surface and hydrogen atoms on the opposite side. The uneven distribution of the OH groups coupled to the partial positive charge of the hydrogen atoms caused electrons to be attracted to the surface. In the present investigation we will consider the ability of the hydrogen cyanide (HCN)‐water complex in stabilizing excess electrons on molecular surfaces. The computed vertical detachment energy (VDE) values are high, suggesting anion stability. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

4.
Capillary electrophoresis (CE) is a relatively new method of analytical separation having the advantages of high separation efficiency, requirement of a small sample amount, low operating cost, and fast separation time. CE is a separation method where the analyte migrates under an electric field due to a charge on the analyte. Hence, CE was unable to separate neutral analytes until the advent of micellar electrokinetic chromatography (MEKC). MEKC is performed with an addition of ionic micelles to an electrophoretic medium, where a portion of the analyte is incorporated into the micelle and has an apparent charge, which can be subject to electrophoretic separation. The migration velocity of the neutral analyte in MEKC depends on what portion of the analyte is incorporated into the micelle. Thus, the separation principle of MEKC is similar to that of chromatography, although the micelle corresponding to the stationary phase in chromatography is not stationary inside the capillary. The fundamental characteristics and theoretical treatments of the behavior of the analyte in MEKC were studied extensively by the author's group. MEKC has been established as one of the most popular separation modes in CE. This review describes how MEKC was developed and how it is useful as a method of analytical separation. © 2008 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 8: 291–301; 2008: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.20156  相似文献   

5.
The effect of methyl group on the strength of the ionic hydrogen bond between C2H2 and H3O+ has been studied with quantum chemical calculations at the UMP2/6‐311++G(d,p) level. The presence of a methyl group in the proton acceptor results in an energetic increase of 6.02 kcal/mol, increased by about 39%, whereas that in the proton donor leads to an energetic decrease of 2.18 kcal/mol, decreased by 14%. The charge analyses indicate that the methyl group in the proton acceptor is electron‐donating and that in the proton donor is electron‐withdrawing. The former plays a positive contribution to the formation of ionic hydrogen bond and the latter plays a negative contribution to the formation of ionic hydrogen bond. The weakening effect of solvent on the role of methyl group in the ionic hydrogen bond has also been studied at the UB3LYP/6‐311++G(d,p) level. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

6.
We have previously alluded to the fact that concentrated charge pockets can form on molecular surfaces that can act to stabilize excess electrons. These charge pockets are formed from systems, which posses a network of hydrogen bonded OH groups on one side of the surface and hydrogen atoms on the opposite side of the molecular surface. In this work, we have increased the size of our recently reported molecular surfaces (Jalbout and Adamowicz, Mol Phys, 2006, 19, 3101) while keeping the number of OH groups constant, to investigate localized charge concentration on extended frameworks. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

7.
First‐principles calculations based on density functional theory are used to investigate the electronic structure along with the stability, bonding mechanism, band gap, and charge transfer of metal‐functionalized silicene to envisage its hydrogen‐storage capacity. Various metal atoms including Li, Na, K, Be, Mg, and Ca are doped into the most stable configuration of silicene. The corresponding binding energies and charge‐transfer mechanisms are discussed from the perspective of hydrogen‐storage compatibility. The Li and Na metal dopants are found to be ideally suitable, not only for strong metal‐to‐substrate binding and uniform distribution over the substrate, but also for the high‐capacity storage of hydrogen. The stabilities of both Li‐ and Na‐functionalized silicene are also confirmed through molecular dynamics simulations. It is found that both of the alkali metals, Li+ and Na+, can adsorb five hydrogen molecules, attaining reasonably high storage capacities of 7.75 and 6.9 wt %, respectively, with average adsorption energies within the range suitable for practical hydrogen‐storage applications.  相似文献   

8.
The preparation and characterization of two types of ionic poly(p‐phenylene terephthalamide) (PPTA) is described. A sufficient number of ionic groups were added to render modified PPTA soluble in dimethylsulfoxide (DMSO). In one type, a hydrogen atom of the amide group was replaced by an ionic propanesulfonate group. In the other type, one of the hydrogen atoms on the phenylene ring was replaced by an ionic sulfonate group. The ionic PPTAs in DMSO showed an upturn in viscosity at very low concentrations that was characteristic of the polyelectrolyte behavior. Fourier transform infrared spectra of these samples were also studied. When the ionic group was attached at the end of the short propane side chain, the intensity of both the free and hydrogen‐bonded N? H stretching mode was reduced compared with that of PPTA. Depending on the location of the ionic group, there were some changes in the intensity and wave number of the asymmetric and symmetric vibrations of the ionic SO group and the stretching mode of the carbonyl group. In both ionic PPTAs, there was an upward shift in the frequency of the symmetric vibrations of the sulfonate ion when the counterion, having been monovalent, became divalent. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2653–2663, 2001  相似文献   

9.
In this work, with a zeolite-type metal-organic framework as both a precursor and a template and furfuryl alcohol as a second precursor, nanoporous carbon material has been prepared with an unexpectedly high surface area (3405 m(2)/g, BET method) and considerable hydrogen storage capacity (2.77 wt % at 77 K and 1 atm) as well as good electrochemical properties as an electrode material for electric double layer capacitors. The pore structure and surface area of the resultant carbon materials can be tuned simply by changing the calcination temperature.  相似文献   

10.
Nickel–metal hydride (Ni–MH) batteries using hydrogen storage alloys as negative electrode materials have been developed and commercialized because of their high energy density, high rate capability and long cycle life, without causing environmental pollution (Song et al. J Alloys Comp 298:254, 2000; Jang et al. J Alloys Comp 268:290, 1998). However, the self-discharge rate is relatively higher than that of the Ni–Cd batteries, which would certainly be disadvantageous in practical applications. The capacity loss of a battery during storage is often related to self-discharge in the cells. Self-discharge takes place from a highly charged state of a cell to a lower state of charge (SOC) and is typically caused by the highly oxidizing or reducing characteristic of one or both of the electrodes in the cell. This self-discharge behavior may be affected by various factors such as gases, impurities, temperature, type of alloy electrode, electrolytes, or charge/discharge methods. The loss of capacity can be permanent or recoverable, depending on the nature of the mechanism (chemical or electrochemical) and aging condition. In this paper, the effects of electrolyte composition and temperature on self-discharge behavior of LaNi5-based hydrogen storage alloy electrodes for Ni–MH batteries have been investigated. It was found that both reversible and irreversible capacity loss of MH electrode tested at 333 K were higher than that at 298 K. When tested at 298 K and 333 K, reversible capacity loss was mainly affected by the electrolyte, while the irreversible capacity loss was not affected. The dissolution of Al from the electrode can be reduced more effectively in an electrolyte with Al addition, compared with that in normal electrolyte. This resulted in a lower reversible capacity loss for the electrode exposed in the Al3+-rich electrolyte. SEM analysis has shown that some needle shape and hexagonal corrosion products were formed on the surface of the alloy electrodes, especially after storage at high temperature.  相似文献   

11.
Hydrogen ions are ideal charge carriers for rechargeable batteries due to their small ionic radius and wide availability. However, little attention has been paid to hydrogen‐ion storage devices because they generally deliver relatively low Coulombic efficiency as a result of the hydrogen evolution reaction that occurs in an aqueous electrolyte. Herein, we successfully demonstrate that hydrogen ions can be electrochemically stored in an inorganic molybdenum trioxide (MoO3) electrode with high Coulombic efficiency and stability. The as‐obtained electrode exhibits ultrafast hydrogen‐ion storage properties with a specific capacity of 88 mA hg?1 at an ultrahigh rate of 100 C. The redox reaction mechanism of the MoO3 electrode in the hydrogen‐ion cell was investigated in detail. The results reveal a conversion reaction of the MoO3 electrode into H0.88MoO3 during the first hydrogen‐ion insertion process and reversible intercalation/deintercalation of hydrogen ions between H0.88MoO3 and H0.12MoO3 during the following cycles. This study reveals new opportunities for the development of high‐power energy storage devices with lightweight elements.  相似文献   

12.
Quadrupolar parameters of nuclei can be used as a tool to understand the electronic structure of the compounds. Magnesium hydride (MgH2) is a potential hydrogen storage material due to its outstanding hydrogen capacity, however, its high thermodynamic stability is unfavorable for dehydrogenation processes. Understanding the bonding nature of Mg and H is essential for improving its dehydrogenation performance. In this work the charge density distribution in MgH2 is studied. For this purpose, using calculated NQCCs of hydrogen atoms, the electronic structure of α-MgH2 with several high pressure forms of MgH2 were compared. The results show that in the high pressure phases (β, γ, and δ) some hydrogens have very small NQCC and therefore these hydrogens form weaker bond with Mg. In other words, easier condition for dehydrogenation in pressure-induced forms is expected. The electric field gradient (EFG) at the site of quadrupolar nuclei were calculated to obtain NQCC parameters using Gaussian 03 at B3LYP/6-31G level of theory. The selected level and basis set give the rather acceptable qualitative NQCCs of hydrogen atoms.  相似文献   

13.
A novel URJC-3 material based on cobalt and 5,5′-(diazene-1,2-diyl)diisophthalate ligand, containing Lewis acid and basic sites, has been synthesized under solvothermal conditions. Compound URJC-3, with polyhedral morphology, crystallizes in the tetragonal and P43212 space group, exhibiting a three-dimensional structure with small channels along a and b axes. This material was fully characterized, and its hydrogen adsorption properties were estimated for a wide range of temperatures (77–298 K) and pressures (1–170 bar). The hydrogen storage capacity of URJC-3 is quite high in relation to its moderate surface area, which is probably due to the confinement effect of hydrogen molecules inside its reduced pores of 6 Å, which is close the ionic radii of hydrogen molecules. The storage capacity of this material is not only higher than that of active carbon and purified single-walled carbon nanotubes, but also surpasses the gravimetric hydrogen uptake of most MOF materials.  相似文献   

14.
Charge storage in 40/60 TiFe alloy has been investigated using electrode fabrication powder material, either of true alloy or of alloy precursor grades. The true alloy activated very reluctantly in that its maximum charge (i.e., hydrogen) capacity remained below 100 mA h g 1. In contrast, the alloy precursor could be activated to an intrinsic capacity of ~300 mA h g–1. Charge storage of the 40/60 TiFe alloy precursor was certainly affected by the redox reactions of surface Fe, but a large amount was stored as hydrogen absorbed by the material, as indicated by a dialometric test and the poison effect. X-ray and EDAX analyses of the two materials can account for their differing abilities to store charge. Electronic Publication  相似文献   

15.
A nonaqueous dispersion of poly(3,4‐ethylenedioxythiophene) (PEDOT) was prepared with the use of polymeric ionic liquid (PIL) as a polymerization template and phase transfer medium. A detailed investigation was performed to understand the role of PIL in the course of polymerization and phase transfer reaction. On the basis of our findings from X‐ray photoelectric spectroscopy (XPS), we propose a mechanism by which the PIL leads to the nanostructured PEDOT colloids in various organic solvents and thus facilitating smoother surface morphologies of the PEDOT‐PIL films. In addition, the enhancement of charge transport was observed for PEDOT‐PIL complex when compared with PEDOT without PIL. Raman spectroscopy indicates that there is a reduced interaction between the charge carriers on the PEDOT and the counter ions bound to PIL, thus promoting charge carrier hopping rates. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6872–6879, 2008  相似文献   

16.
Three-amide oligomers of nylon 6 and nylon 6 6 have been investigated using electron microscopy (imaging and diffraction), X-ray diffraction, and computational modeling. A new crystal structure has been discovered for the three-amide oligomer of nylon 6. This material crystallizes from chloroform/dodecane solutions into an unfolded crystal form that has progressively sheared hydrogen bonding in two directions between polar (unidirectional) chains. This structure is quite different from the usual room temperature α-phase structure of chain-folded nylon 6 crystals, in which alternatingly sheared hydrogen bonding occurs between chains of opposite polarity in only one direction. The occurrence of this new structure illustrates the extent to which progressively sheared hydrogen bonding is preferred over alternatingly sheared hydrogen bonding. Indeed, the progressive hydrogen bonding scheme occurs in the three-amide nylon 6 material even though it requires a disruption to the lowest potential energy all-trans conformation of the chain backbone, and requires all the chains in each hydrogen-bonded layer to be aligned in the same direction. We believe the presence of chain folding, which necessarily incorporates adjacent chains of opposite polarity into the crystal structure, prevents the formation of this new crystal structure in the nylon 6 polymer. In contrast, the three-amide nylon 6 6 crystal structure is analogous to the polymeric nylon 6 6 α-phase structure, found in both fibers and chain-folded crystals, and consists of progressive hydrogen-bonded sheets which stack with a progressive shear. In both structures, the molecules (≈ 3 nm in length) form smectic C-like layers with well-orchestrated stacking of 2.2 nm to form a three-dimensional crystal. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2849–2863, 1998  相似文献   

17.
李兰兰  程方益  陶占良  陈军 《应用化学》2010,27(9):998-1003
综述了第一性原理计算在储氢材料研究中取得的成果和最新的进展。 第一性原理计算在储氢材料研究中的应用主要有以下4个方面: 1)研究纳米结构的储氢性能; 2) 研究储氢材料中掺杂和缺陷的作用及对储氢性能的影响; 3)研究储氢机理; 4)确定氢化物的几何结构以及预测新型储氢材料。 同时展望了第一性原理计算在储氢领域中的应用前景。  相似文献   

18.
Planar organic electrochemical transistors (OECTs) using PEDOT:PSS as the channel material and nanostructured carbon (nsC) as the gate electrode material and poly(sodium 4‐styrenesulfonate (PSSNa) gel as the electrolyte were fabricated on flexible polyethylene terephthalate (Mylar®) substrates. The nsC was deposited at room‐temperature by supersonic cluster beam deposition (SCBD). Interestingly, the OECT acts as a hybrid supercapacitor (to give a device that we indicate as transcap). The energy storage ability of transcaps has been studied with two cell configurations: one featuring PEDOT:PSS as the positive electrode and nsC as the negative electrode and another configuration with reversed electrode polarity. Potentiostatic charge/discharge studies show that both supercapacitors show good performance in terms of voltage retention, in particular, when PEDOT:PSS is used as the positive electrode. Galvanostatic charge–discharge characteristics show typical symmetric triangular shape, indicating a nearly ideal capacitive behavior with a high columbic efficiency (close to 100%). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 96–103  相似文献   

19.
Conventional electrode materials for supercapacitors are based on nanoscaled structures with large surface areas or porosities. This work presents a new electrode material, the so‐called hydrophilized polymer network. The network has two unique features: 1) it allows for high capacitance (up to 400 F/g) energy storage in a simple film configuration without the need of high‐surface‐area nanostructures; 2) it is unstable in water, but becomes extremely stable in electrolyte with high ionic strength. The above features are related to the hydrophilizing groups in the network which not only generate hydrated ionic conduction channels, but also enable the cross‐linking of the network in electrolyte. Because of its practical advantages such as easy preparation and intrinsic stability in electrolyte, the hydrophilized network may provide a new route to high‐performance supercapacitive energy storage. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1234–1240, 2011  相似文献   

20.
Solid polymer electrolytes (SPEs) are compounds of great interest as safe and flexible alternative ionics materials, particularly suitable for energy storage devices. We study an unusual dependence on the salt concentration of the ionic conductivity in an SPE system based on poly(ethylene carbonate) (PEC). Dielectric relaxation spectroscopy reveals that the ionic conductivity of PEC/lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte continues to increase with increasing salt concentration because the segmental motion of the polymer chains is enhanced by the plasticizing effect of the imide anion. Fourier transfer‐infrared (FTIR) spectroscopy suggests that this unusual phenomenon arises because of a relatively loose coordination structure having moderately aggregated ions, in contrast to polyether‐based systems. Comparative FTIR study against PEC/lithium perchlorate (LiClO4) electrolytes suggests that weak ionic interaction between Li and TFSI ions is also important. Highly concentrated electrolytes with both reasonable conductivity and high lithium transference number (t+) can be obtained in the PEC/LiTFSI system as a result of the unusual salt concentration dependence of the conductivity and the ionic solvation structure. The resulting concentrated PEC/LiTFSI electrolytes have extraordinary oxidation stability and prevent any Al corrosion reaction in a cyclic voltammetry. These are inherent effects of the highly concentrated salt. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2442–2447  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号