首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an effort to create frontal polymerization systems with a “fail‐safe” curing mechanism, we studied the effects of thiols on the thermal frontal polymerization velocity and pot life of a mixture of a multifunctional acrylate, kaolin clay (filler), and cumene hydroperoxide with either trimethylolpropane tris(3‐mercaptopropionate) or 1‐dodecanethiol (DDT). The acrylates were trimethylolpropane triacrylate, trimethylolpropane ethoxylate triacrylate, 1,6‐hexanediol diacrylate, and di(ethylene glycol) diacrylate. Without a thiol, frontal polymerization did not occur. The front velocity increased with the concentration of either thiol, which has not been observed with peroxide initiators. The use of DDT yielded longer pot lives than the trithiol. The front velocities were inversely related to the pot lives. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3850–3855  相似文献   

2.
We studied thermal frontal polymerization using a redox system in an attempt to lower the temperature of the frontally polymerizable system while increasing the front velocity so as to obtain a self‐sustaining front in a thinner layer than without the redox components. A cobalt‐containing polymer with a melting point of 63 °C (Intelimer 6050X11) and cumene hydroperoxide were used with a triacrylate. The use of the Intelimer decreased the front velocity but allowed fronts to propagate in thinner layers and with more filler while still having a pot life of days. Nonplanar modes of propagation occurred. Fronts propagated faster when 6‐O‐palmitoyl‐L ‐ascorbic acid was used as a reductant. Interestingly, fronts were also faster with the reductant even without the Intelimer if kaolin clay was the filler; however, the pot life was significantly reduced. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
We demonstrate for the first time spherically propagating frontal polymerization that also exhibits spin modes. We have developed an interesting system using the amine‐catalyzed Michael addition of a trithiol to a triacrylate to create a rubbery gel. The gel suppresses convection and bubble formation during front propagation. A peroxide is also present to act as a thermal initiator. The front propagates via free‐radical polymerization of the remaining triacrylate after being initiated photochemically in the center of the reactor. It is possible to prepare the rubbery gel in any shape and then initiate thermal frontal polymerization. So‐called spin modes have been observed for the first time in spherically propagating fronts in which waves of polymerization propagate on the expanding spherical front. A system using a diacrylate dissolved in dimethyl sulfoxide with added silica gel and with persulfate as the initiator supports spherical fronts but does not exhibit spin modes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1387–1395, 2006  相似文献   

4.
Thermal frontal polymerization is a process in which a localized reaction propagates through an unstirred system by the coupling of the thermal diffusion and the Arrhenius kinetics of an exothermic polymerization. With multifunctional acrylates, such as trimethylolpropane triacrylate (TMPTA‐n), front temperatures can reach 250 °C, resulting in smoke from unreacted peroxide. Addition of a thiol lowers the front temperature and the front velocity due the copolymerization between the thiol and the acrylate, with some formulations not sufficiently reactive to sustain frontal polymerization. The effects of molecular weight per thiol and functionality of thiol on front temperature and velocity were studied in the frontal copolymerization of TMPTA‐n/trimethylolpropane ethoxylate triacrylate and different thiols. We also investigated the front temperature and velocity for a system containing triacrylate and dodecyl acrylate. Finally, the effects of lithium chloride in the presence of thiol on the front velocity and front temperature were studied. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
Traveling polymerization fronts in unstirred solutions of methylmethacrylate, methacrylic acid, or acrylamide with some free radicals initiators (through thermal decomposition) have been observed experimentally. A local heating of the initial reactant mixture, under suitable conditions, leads to a reaction front that propagates along the space coordinate with a constant velocity. In this article, a physical interpretation of this phenomenon is provided through a mathematical model that accounts for the depolimerization reaction and is based on the constant pattern approach. Moreover, an approximate explicit analytic expression for the velocity of propagation of the polymerization front is proposed. The theoretical values are compared with those measured experimentally as a function of the initiator concentration for different addition polymerization systems. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35:1047–1059, 1997  相似文献   

6.
We observed that the velocities of descending thermoset polymerization fronts were strongly affected by the orientation of the tube. The front remained approximately perpendicular to the gravitational vector but propagated almost 1.8 times as fast at 75° along the axis of the tube. We performed a study of the velocity and front‐shape dependence on orientation with propagating fronts of triethylene glycol dimethacrylate with peroxide initiator and acrylamide/bisacrylamide polymerization in dimethyl sulfoxide with persulfate initiator. The percentage increase of velocity was independent of the initiator concentration but strongly dependent on the viscosity. Convection under the front flowed away from the tube wall nearest the vertical axis and was stronger as the angle increased. The front shape also changed, becoming significantly distorted near the wall from which the convection originated. We applied a simple geometric argument to explain the angular dependence for small angles on the basis of the assumption that convection did not affect the velocity of propagation normal to the front. The increase in velocity along the tube axis could be explained by a projection of the normal velocity onto the tube axis, following a 1/cosθ dependence. For higher angles, the convection was not sufficiently strong to maintain a level front. When the difference from a 180° orientation was considered, the velocity dependence exactly followed the geometric relationship. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3504–3508, 2002  相似文献   

7.
This work deals with the preparation of poly(urethane acrylates) by using two different polymerization techniques. Namely, the classical batch procedure has been compared with frontal polymerization (FP). A thorough study on the effect of initiator type, concentration, and on the velocity of the front and its maximum temperature has been carried out. Moreover, two different synthetic ways have been studied: the one step poly(urethane acrylate) preparation starting directly from 1,6 diisocyanato hexane and 2‐hydroxyethyl acrylate, and the two step procedure consisting of the synthesis of the corresponding diurethane diacrylate and of its subsequent polymerization. The first method has the advantage of being faster but some caution is necessary due to the excessive heat that is generated if the reaction conditions are not properly chosen. The second approach requires a further step but has the advantage of being more controlled. DSC analysis did not show any significant difference by comparing the thermal properties of the materials obtained by the two techniques (batch and FP). However, since FP runs are very easy and fast to be performed, FP should be seriously taken into proper account when these materials have to be prepared. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3344–3352, 2008  相似文献   

8.
We report the first synthesis of urethane–acrylate copolymers via free‐radical frontal polymerization. In a typical run, the appropriate amounts of the reactants (urethane–acrylate macromonomer and 2‐hydroxyethyl acrylate) and initiator (ammonium persulfate) were dissolved in dimethyl sulfoxide. Frontal polymerization was initiated by the heating of the wall of the tube with a soldering iron, and the resultant hot fronts were allowed to self‐propagate throughout the reaction vessel. Once it was initiated, no further energy was required for the polymerization to occur. The dependence of the front velocity and front temperature on the initiator concentration was investigated. The front temperatures were between 55 and 65 °C, depending on the persulfate concentration. Thermogravimetric analysis indicated that the urethane–acrylate copolymers had higher thermal stability than pure frontally prepared polyurethane. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3018–3024, 2006  相似文献   

9.
We studied the frontal curing of trimethylolpropane triglycidyl ether (TMPTGE) using two BF3‐amine initiators and two fillers, kaolin and fumed silica. In the case of kaolin, the range of concentrations allowing for frontal polymerization to propagate was dependent on its heat absorption effect whereas in the case of silica it was a consequence of the rheological features of this additive. However, for both systems the velocity and front temperature show the same trends; in all cases front velocities were on the order of 1 cm/min with front temperatures about 200 °C. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2000–2005, 2010  相似文献   

10.
Isothermal frontal polymerization (IFP) is a directional polymerization that uses the Trommsdorff, or gel, effect to produce gradient materials for optical applications. When a solution of methyl methacrylate and a thermal initiator contacts a polymer seed (a small piece of polymer), a viscous region is formed in which the polymerization rate is faster because of the Trommsdorff effect. Using the optical techniques of laser line deflection (Weiner's method) and shadowgraphy along with controls, we obtained definitive experimental evidence of IFP. Moreover, we were able to measure accurately and precisely the front position and front concentration profile as a function of time by monitoring IFP systems and controls of various initiator concentrations and cure temperatures. The experimental data were compared with theoretical predictions from a model using mass‐diffusion and radical polymerization kinetics. The model reproduced the decrease of the propagation time and showed an increase in the propagation velocity for an increase in the initiator concentration and/or cure temperature. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5774–5786, 2005  相似文献   

11.
Formulations containing vinyl ethers and epoxy were successfully polymerized through a radical-induced cationic frontal polymerization mechanism, using an iodonium salt superacid generator with a peroxide thermal radical initiator and fumed silica as a filler. It was found that an increase of vinyl ether content resulted in higher front velocities for divinyl ethers in formulations with trimethylolpropane triglycidyl ether. However, increased hydroxymonovinyl ether either decreased the front velocity or suppressed frontal polymerization. The kinetic effects of the superacid generator and thermal radical initiator with varying vinyl ether content were also studied. It was observed that increasing concentrations of initiators increased the front velocity, with the system exhibiting higher sensitivity to the superacid generator concentration.  相似文献   

12.
Heterogeneous‐layered silicate‐immobilized 2,6‐bis(imino)pyridyl iron (II) dichloride/MMAO catalysts, in which the active polymerization species are intercalated within sodium‐ and organomodified‐layered silicate galleries, were prepared for producing hybrid exfoliated polyethylene (PE) nanocomposites by means of in situ polymerization. The inorganic filler was first treated with modified‐methylaluminoxane (MMAO) to produce a supported cocatalyst: MMAO reacts with silicates replacing most of the organic surfactant, thus modifying the original crystallographic clay order. MMAO anchored to the nanoclay was able to activate polymerization iron complexes initiating the polymer growth directly from the filler lamellae interlayer. The polymerization mechanism taking place in between the montmorillonite lamellae separates the layers, thus promoting deagglomeration and effective clay dispersion. Transmission electron microscopy revealed that in situ polymerization by catalytically active iron complexes intercalated within the lower organomodified clay led to fine dispersion and high exfoliation extent. The intercalated clay catalysts displayed a longer polymerization life‐time and brought about ethylene polymerization more efficiently than analogous homogeneous systems. PEs having higher molecular masses were obtained. These benefits resulted to be dependent more on the filler nature than on the ligand environment around the iron metal center and the experimental synthetic route. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 548–564, 2009  相似文献   

13.
We report a novel approach to prepare microparticles via a dispersion polymerization using the amine‐catalyzed addition of a trithiol to a triacrylate. Microparticles loaded with various core materials were produced and applied in various systems to improve the desired characteristics of the given system. We determined that this type of microparticle could be used as either a stimulated release or controlled release system for certain desired core materials. These microparticles were able to prevent the interaction between a Lewis acid initiator and fumed silica, improving the rheological properties of an epoxy system containing the initiator. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Highly filled polyethylene (PE)‐based nanocomposites were obtained by insitu polymerization technique. An organically modified montmorillonite, Cloisite® 15A (C15A), was previously treated with methylaluminoxane (MAO) to form a supported cocatalyst (C15A/MAO) before being contacted with a zirconocene catalyst. The main features of C15A/MAO intermediates were studied by elemental analysis, TGA, TGA‐FTIR, WAXD, and TEM. MAO reacts with the clay, replaces most of the organic surfactant within the clay galleries and destroys the typical crystrallographic order of the nanoclay. The catalytic activity in the presence of C15A/MAO is higher than in ethylene polymerization without any inorganic filler and increases with MAO supportation time. This indicates that part of the polymer chains grows within the clay galleries, separates them, and makes it possible to tune the final morphology of the composites. The polymerization results and the influence of C15A pretreatment and polymerization conditions on thermal and morphological properties of the hybrid PE/C15A nanocomposites are presented. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5390–5403, 2008  相似文献   

15.
A novel approach of photo‐triggered redox frontal polymerization (FP) by integrating photocaged superbase (QA‐DBU) with a peroxide initiator (dibenzoyl peroxide, BPO) is presented for the synthesis of thermally sensitive materials. Under photo‐irradiation at a localized region, the regenerated superbase can diffuse into unirradiated regions and effectively actuate redox FP in a diffusion‐controlled manner. Moreover, the redox FP can be conducted at a much lower front temperature with enhanced front velocity. Astonishingly, the front temperature can be well‐modulated by changing the concentration of latent superbase. The prepared thermally sensitive fluorescent polymer composites exhibit enhanced fluorescence emission intensity compared to that of conventional thermal FP. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4515–4521  相似文献   

16.
The effect of catalyst partitioning over the organic and water phases in the catalytic chain transfer mediated miniemulsion polymerization was investigated and a mathematical model developed to describe the instantaneous degree of polymerization of the formed polymer. Experimental and predicted instantaneous degrees of polymerization prove to be in excellent agreement. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5839–5849, 2008  相似文献   

17.
Frontal polymerization is a method of converting monomer(s) to polymer via a localized reaction zone that propagates from the coupling of thermal diffusion with the Arrhenius kinetics of an exothermic reaction. Several factors affect front velocity and temperature with the role of monomer functionality being of particular interest in this study. Polymerizing a di and triacrylate of equal molecular weight per acrylate revealed that as the proportion of triacrylate was increased the velocity and temperature increased. This is attributed to increased crosslinking and autoacceleration. Comparing several different acrylate monomers, both neat and diluted with dimethyl sulfoxide (DMSO) so as to maintain constant acrylate group concentration, shows that velocity increases with increased functionality from mono to difunctional monomers. This trend breaks when applied to tri‐ and tetraacrylates, with fronts containing trifunctional monomer being the fastest. Acrylates containing hydroxyl functionality, as in the case of pentaerythritol‐based triacrylates, are slower than acrylates without. This is attributed to a chain‐transfer event and was tested using octanol and a hydroxyl‐free acrylate. It has also been shown that small amounts of water cause a lowering of front velocity due to energy lost via vaporization, which lowers the front temperature. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 982–988  相似文献   

18.
We report the first synthesis of poly(hydroxyethyl acrylate) (PHEA) without solvent by free‐radical frontal polymerization (FP) at ambient pressure. In a typical run, the appropriate amounts of reactant (hydroxyethyl acrylate) and initiator (1,1‐di(tert‐butylperoxy)‐3,3,5‐trimethylcyclohexane) (Luperox 231) were mixed together at ambient pressure. FP was initiated by heating the wall of the tube with a soldering iron, and the resultant hot fronts were allowed to self‐propagate throughout the reaction vessel. Once initiated, no further energy was required for polymerization to occur. To study the macrokinetics, we also produced PHEA frontally with ammonium persulfate as initiator and dimethyl sulfoxide as the solvent. The dependences of the front velocity and front temperature on the initiator concentration and reactant dilution were investigated. The front temperatures were between 124 and 157 °C, depending on the ammonium persulfate concentration. Thermogravimetric analysis indicates that PHEA prepared by FP with ammonium persulfate as initiator had higher thermal stability than solvent‐free frontally prepared PHEA with Luperox 231 as initiator. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 873–881, 2007  相似文献   

19.
Isothermal frontal polymerization is a directional polymerization that utilizes the Norish‐Trommsdorff (gel) effect to produce optical gradient materials. When a solution of methyl methacrylate and thermal initiator contacts a polymer seed (a small piece of poly(methyl methacrylate), a viscous region is formed in which the polymerization rate is faster than in the bulk solution. We obtained definitive evidence of the isothermal nature of the process by placing thermocouples above the propagating front. Using the optical technique of laser line deflection (Weiner's method), we studied the front propagation to determine the induction period, and the maximum distance propagated as a function of the molecular weight of the seed. We determined that the polymer seed must have a minimum molecular weight to initiate a front. We also determined that oxygen would act as a bulk polymerization inhibitor and increase the front propagation distance, but after purging the monomer–initiator solution with oxygen for several hours, the distance was shortened. We ascribed this behavior to the formation of peroxy radicals from the slow decomposition of the initiator and subsequent reaction with oxygen. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3601–3608, 2006  相似文献   

20.
We report a new facile strategy for quickly synthesizing poly(2‐hydroxyethyl acrylate‐co‐vinyl versatate) amphiphilic gels with excellent physicochemical properties by frontal free‐radical polymerization. The appropriate amounts of 2‐hydroxyethyl acrylate, vinyl versatate (VeoVa 9) and ammonium persulfate initiator were mixed together at ambient temperature in the presence of N‐methyl‐2‐pyrrolidone as the solvent medium. Frontal polymerization (FP) was initiated by heating the wall of the tube with a soldering iron. Once initiated, no further energy was required for the polymerization to occur. The dependence of the front velocity and front temperature on the initiator concentration was investigated. The front temperatures were between 132 and 157 °C, depending on the initiator concentration. The morphology, swelling rate, and swelling behavior of amphiphilic gels prepared via FP were comparatively investigated on the basis of scanning electron microscopy, water contact angle, and swelling measurements. Results show that the amphiphilic gels prepared via FP behave with good swelling capacity both in water and organic solvents. The FP can be exploited as an alternative means for synthesis of amphiphilic gels with additional advantages of fast and efficient way. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 823–831, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号