首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(N‐vinylcaprolactam) (PNVCL) star‐shaped polymers with four arms and carboxyl end groups were synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization of N‐vinylcaprolactam (NVCL) employing a tetrafunctional trithiocarbonate as an R‐RAFT agent. The resulting star polymers were characterized using 1H NMR, FT‐IR, gel permeation chromatography (GPC), and UV–vis. Molecular weight of star polymers were analyzed by GPC and UV–vis being observed that the values obtained were very similar. Furthermore, the thermosensitive behavior of the star polymers was studied in aqueous solution by measuring the lower critical solution temperature by dynamic light scattering. Star‐shaped PNVCL were chain extended with ethyl‐hexyl acrylate (EHA) to yield star PNVCL‐b‐PEHA copolymers with an EHA molar content between 4% and 6% proving the living character of the star‐shaped macroCTA. These star block copolymers form aggregates in aqueous solutions with a hydrodynamic diameter ranged from 170 to 225 nm. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2156–2165  相似文献   

2.
The photochemical and photophysical properties of new polymeric photoinitiators (PPIs) containing pendant thioxanthone (TX) and amine moieties are studied. The PPIs are synthesized by copolymerization of tert‐butyl 2‐((9‐oxo‐9H‐thioxanthen‐2‐yloxy)methyl)acrylate (TX1) with N,N‐dimethylaminoethyl methacrylate (DMAEM) at two different ratios using free radical polymerization. UV–vis spectra indicate that PPIs possess similar absorption characteristics to TX1 in the violet range (~400 nm; absorption red‐shift 20 nm). The photochemical mechanisms are studied by electron spin resonance (ESR), steady state photolysis, laser flash photolysis, and cyclic voltammetry. ESR studies indicate formation of two different aminoalkyl radicals on the hydrogen donor amine. The triplet state of the PPIs is short‐lived compared to isopropyl thioxanthone and TX1, due to the built‐in amine functionality. Photopolymerization of trimethylolpropane triacrylate (TMPTA) initiated by these photoinitiators under LED exposure at 385 and 405 nm using real‐time FTIR spectroscopy shows that they exhibit higher efficiency than TX/N‐methyldiethanolamine (MDEA) and TX1/MDEA systems with the advantage of a much higher molecular weight that can be very helpful to overcome migration issues. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3370–3378  相似文献   

3.
A novel way to prepare an electroactive polyamide (alternating copolymer) is presented. Well‐defined molecular structure polyamide with amine‐capped aniline pentamer in the main chain was obtained. The copolymer has been characterized by Fourier‐transform infrared (FTIR) spectra, 1H NMR, elemental analysis (EA), and gel permeation chromatography (GPC). Its chemical oxidation process was studied by UV–vis spectra and the electrochemical analysis was checked by cyclic voltammetry (CV). It was found that the obtained electroactive polyamide shows three redox peaks in the cyclic voltammetry, which is different from the polyaniline. Moreover, the thermal properties of the copolymer were evaluated by thermogravimetric analysis (TGA). The electrical conductivity is about 2.5 × 10?6 S cm?1 at room temperature. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 477–482, 2006  相似文献   

4.
The photosensitized degradation of poly(L ‐lactic acid) (PLA) via an anionic reaction process was studied using spectrophotometry, electron spin resonance (ESR), and gel permeation chromatography (GPC) measurements. PLA film doped with N,N,N′,N′‐tetramethyl‐p‐phenylenediamine (TMPD) was irradiated at 77 K using UV light (λc = 356 nm) by which the PLA matrix itself cannot be directly excited. After photoirradiation, a new broad absorption band appeared over the original spectrum due to TMPD+ ·, which was produced by two‐photon ionization. The ESR spectrum of the irradiated sample indicated the presence of the TMPD+ · radical and main‐chain scission radical of PLA. During the thermal annealing at 0 °C, the latter radical changed to another radical species by dehydrogenation of the alpha hydrogen of the PLA main chain. TMPD+ · was extremely stable at room temperature for 7 d. However, by thermal annealing at 40 °C, all the radicals decayed due to the enhanced molecular motions near Tg of PLA (58.7 °C). Spectral simulation for the obtained ESR spectra revealed the relative amounts of four radicals: TMPD+ ·, a main‐chain scission radical, a main‐chain tertiary radical, and an unknown radical. The last one was tentatively assigned to the PLA radical anion because of its short decay time. GPC measurements clearly indicated a decrease in the molecular weight of PLA after irradiation. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 706–714, 2001  相似文献   

5.
A facile synthetic strategy was developed for the preparation of thermoresponsive nanocomposite hydrogels comprising crosslinked chitosan (CS) networks and poly(N‐isopropylacrylamide) [p(NIPAAm)] nanogels. First, thermoresponsive p(NIPAAm) nanogels were synthesized via emulsion polymerization. The p(NIPAAm) nanogels were introduced into methacrylamide CS (MC) solution and the free‐radical initiated crosslinking reaction of MC produced nanogel‐embedded hydrogels. The last step involves the loading of the antibacterial model drug levofloxacin (LFX) into the prepared nanocomposite hydrogels by allowing the preformed hydrogels to swell to equilibrium in the drug's aqueous solution. The integration of p(NIPAAm) nanogel into CS networks facilitates thermoresponsive release of LFX with an enhancement of the drug‐loading capacity within the hydrogel. Notably, thermoresponsive drug‐release was achieved without unwarranted modification of the hydrogel's dimension and shape, although an increase in temperature caused the collapse of the p(NIPAAm) nanogels. The thermoresponsive property of the investigated nanocomposite hydrogel is beneficial and may offer broad opportunities for drug temperature‐triggered release for clinical applications. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1907–1914  相似文献   

6.
An electroactive triblock copolymer of poly(ethylene glycol) (PEG) and aniline pentamer (AP), PEG‐block‐AP‐block‐PEG (PAP), was synthesized via polycondensation in the presence of N,N'‐dicyclohexylcarbodiimide (DCC). The UV‐vis spectra and cyclic‐voltammograms (CV) spectra exhibited an excellent electroactivity of the triblock copolymer. The amphiphilic triblock copolymer self‐assembles spontaneously into uniform micellar aggregates when the triblock copolymer was added directly to the aqueous solution. The size of the aggregates can be changed with the oxidation state of the AP segment in the PAP copolymer and the aggregates were pH‐sensitive to the surrounding water solution, which provides a potential application in controlled drug release.

  相似文献   


7.
Controlled radical polymerizations of N‐ethylmethylacrylamide (EMA) by atom transfer radical polymerization and reversible addition‐fragmentation chain transfer processes were investigated in detail for the first time, employing complementary characterization techniques including gel permeation chromatography, 1H NMR spectroscopy, and matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry. In both cases, relatively good control of the polymerization of EMA was achieved, as revealed by the linear evolution of molecular weights with monomer conversions and the low polydispersity of poly(N‐ethylmethylacrylamide) (PEMA). The thermal phase transitions of well‐defined PEMA homopolymers with polydispersities less than 1.2 and degrees of polymerization up to 320 in aqueous solution were determined by temperature‐dependent turbidity measurements. The obtained cloud points (CPs) vary in the range of 58–68 °C, exhibiting inverse molecular weight and polymer concentration dependences. Moreover, the presence of a carboxyl group instead of an alkyl one at the PEMA chain end can elevate its CP by ~3–4 °C. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 60–69, 2008  相似文献   

8.
A series of shape memory polyurethanes were synthesized from poly(tetramethylene glycol), 4,4‐methylene diphenyl diisocyanate, and 1,3‐butanediol. The prepolymers with different molecular weights (Mc) were capped with 2‐hydroxyl ethylacrylate or 3‐aminopropyltriethoxysilane (APTES) and crosslinked by UV curing or a sol–gel reaction. Variations of the crosslinker functionality (f), subchain density (N), and hard segment content (HSC) produced systematic variations of the glass transition temperature (6–45 °C), accompanied by changes in the mechanical, dynamic mechanical and shape memory properties. More than 95% of shape fixity and 98% of shape recovery up to the fourth cycles were obtained with APTES crosslinked 3000Mc with 30% of HSC. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1473–1479  相似文献   

9.
A novel double brush‐shaped copolymer with amphiphilic polyacrylate‐b‐poly(ethylene glycol)‐b‐poly acrylate copolymer (PA‐b‐PEG‐b‐PA) as a backbone and thermosensitive poly(N‐isopropylacrylamide) (PNIPAM) long side chains at both ends of the PEG was synthesized via an atom transfer radical polymerization (ATRP) route, and the structure was confirmed by FTIR, 1H NMR, and SEC. The thermosensitive self‐assembly behavior was examined via UV‐vis, TEM, DLS, and surface tension measurements, etc. The self‐assembled micelles, with low critical solution temperatures (LCST) of 34–38 °C, form irregular fusiform and/or spherical morphologies with single, double, and petaling cores in aqueous solution at room temperature, while above the LCST the micelles took on more regular and smooth spherical shapes with diameter ranges from 45 to 100 nm. The micelle exhibits high stabilities even in simulated physiological media, with low critical micellization concentration (CMC) up to 5.50, 4.89, and 5.05 mg L?1 in aqueous solution, pH 1.4 and 7.4 PBS solutions, respectively. The TEM and DLS determination reveled that the copolymer micelle had broad size distribution below its LCST while it produces narrow and homogeneous size above the LCST. The cytotoxicity was investigated by MTT assays to elucidate the application potential of the as‐prepared block polymer brushes as drug controlled release vehicles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
The heterochain crosslinking theory is applied to postgel behavior in the free‐radical crosslinking copolymerization of vinyl and divinyl monomers. In this context, the crosslinked polymer formation can be viewed as a system in which the primary chains formed at different times are combined in accordance with the statistical chain‐connection rule governed by the chemical reaction kinetics. Because the primary chains are formed consecutively, the number of chain types N must be extrapolated to infinity, N → ∞. Practically, such extrapolation can be conducted with the calculated values for only three different N values. The analytical expressions for the weight fraction and average molecular weights of the sol fraction are derived for the general primary chain length distribution function in free‐radical polymerization. Illustrative calculations show that the obtained results agree with those from the Monte Carlo method, and that the postgel properties in free‐radical crosslinking copolymerization systems could be significantly different from those in randomly crosslinked systems. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2342–2350, 2000  相似文献   

11.
In this article, we report the preparation and properties of the bulk supramolecular polymer gels prepared from a polybutadiene based on the amidinium‐carboxylate salt bridge, highlighting the difference from a well‐established network system based on carboxylic acid and amine. We have prepared the amidinium‐carboxylate salt bridge‐based supramolecular polymer gels from a carboxy‐terminated telechelic polybutadiene and a linear polyamidine having N,N′‐di‐substituted acetamidine group in the main chain. FTIR analysis along with Small angle X‐ray scattering measurements indicated that the salt bridge was attributed to the gelation through three‐dimensional network formation. Virtually no fluidity was observed for the supramolecular gel containing equimolar amounts of the carboxyl group and the amidine group, which showed a high G′ value of about 1 MPa at room temperature and a Tgel of 37 °C. For comparison, the supramolecular polymer gels crosslinked by ammonium‐carboxylate salt were prepared using a linear polyethyleneimine instead of the polyamidine. The gel with equimolar amounts of the carboxyl group and the secondary amino group showed liquid‐like fluidity with a G′ value of about 0.01 MPa at room temperature, which was attributed to the fact that a certain amount of the carboxyl group remained as its free form without salt formation, as evidenced by FTIR analysis. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1815–1824  相似文献   

12.
Well‐defined H‐shaped pentablock copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM), poly(N,N‐dimethylaminoethylacrylamide) (PDMAEMA), and poly(ethylene glycol) (PEG) with the chain architecture of (A/B)‐b‐C‐b‐(A/B) were synthesized by the combination of single‐electron‐transfer living radical polymerization, atom‐transfer radical polymerization, and click chemistry. Single‐electron‐transfer living radical polymerization of NIPAM using α,ω azide‐capped PEG macroinitiator resulted in PNIPAM‐b‐PEG‐b‐PNIPAM with azide groups at the block joints. Atom‐transfer radical polymerization of DMAEMA initiated by propargyl 2‐chloropropionate gave out α‐capped alkyne‐PDMAEMA. The H‐shaped copolymers were finally obtained by the click reaction between PNIPAM‐b‐PEG‐b‐PNIPAM and alkyne‐PDMAEMA. These copolymers were used to prepare stable colloidal gold nanoparticles (GNPs) in aqueous solution without any external reducing agent. The formation of GNPs was affected by the length of PDMAEMA block, the feed ratio of the copolymer to HAuCl4, and the pH value. The surface plasmon absorbance of these obtained GNPs also exhibited pH and thermal dependence because of the existence of PNIAPM and PDAMEMA blocks. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

13.
Interconnected microcellular polymeric monoliths having unexpected high mechanical strength have been prepared using the high internal phase emulsion (HIPE) methodology. Oil‐in water concentrated emulsions of aqueous 1‐vinyl‐5‐amino [1,2,3,4]tetrazole (1‐VAT) mixed with a low molar ratio (7%) of N,N′‐methylenebisacrylamide as crosslinking agent were prepared using dodecane as dispersed phase and a mixture of hydrophilic surfactants. “Reverse” polyHIPE materials were obtained after radical copolymerization, solvent extraction, and drying. Their morphology, chemical composition, and physicochemical behavior are discussed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2942–2947, 2010  相似文献   

14.
Here we report the synthesis and solution characterization of a novel series of AB diblock copolymers with neutral, water‐soluble A blocks consisting of N,N‐dimethylacrylamide and pH‐responsive B blocks of N,N‐dimethylvinylbenzylamine. To our knowledge, this represents the first example of an acrylamido–styrenic block copolymer prepared directly in a homogeneous aqueous solution. The best blocking order [with poly(N,N‐dimethylacrylamide) as a macro‐chain‐transfer agent] yielded well‐defined block copolymers with minimal homopolymer impurities. The reversible aggregation of these block copolymers in aqueous media was studied with 1H NMR spectroscopy and dynamic light scattering. Finally, an example of core‐crosslinked micelles was demonstrated by the addition of a difunctional crosslinking agent to a micellar solution of the parent block copolymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1724–1734, 2004  相似文献   

15.
We have reported that intramolecular chain‐transfer reaction takes place in radical polymerization of itaconates at high temperatures and/or at low monomer concentrations. In this article, radical polymerizations of di‐n‐butyl itaconate (DBI) were carried out in toluene at 60 °C in the presence of amide compounds. The 13C‐NMR spectra of the obtained poly(DBI)s indicated that the intramolecular chain‐transfer reaction was suppressed as compared with in the absence of amide compounds. The NMR analysis of DBI and N‐ethylacetamide demonstrated both 1:1 complex and 1:2 complex were formed at 60 °C through a hydrogen‐bonding interaction. The ESR analysis of radical polymerization of diisopropyl itaconate (DiPI) was conducted in addition to the NMR analysis of the obtained poly(DiPI). It was suggested that the suppression of the intramolecular chain‐transfer reaction with the hydrogen‐bonding interaction was achieved by controlling the conformation of the side chain at the penultimate monomeric unit of the propagating radical with an isotactic stereosequence. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4895–4905, 2004  相似文献   

16.
Various densely grafted polymers containing poly(aniline‐2‐sulfonic acid‐co‐aniline)s as side chains and polystyrene as the backbone were prepared. A styryl‐substituted aniline macromonomer, 4‐(4‐vinylbenzoxyl)(Ntert‐butoxycarbonyl)phenylamine (4‐VBPA‐tBOC), was first prepared by the reaction of 4‐aminophenol with the amino‐protecting moiety di‐tert‐butoxyldicarbonate, and this was followed by substitution with 4‐vinylbenzyl chloride. 4‐VBPA‐tBOC thus obtained was homopolymerized with azobisisobutyronitrile as an initiator, and this was followed by deprotection with trifluoroacetic acid to generate poly[4‐(4‐vinylbenzoxyl)phenylamine] (PVBPA) with pendent amine moieties. Second, the copolymerization of aniline‐2‐sulfonic acid and aniline was carried out in the presence of PVBPA to generate densely grafted poly(aniline‐2‐sulfonic acid‐co‐aniline). Through the variation of the molar feed ratio of aniline‐2‐sulfonic acid to aniline, various densely grafted copolymers were generated with different aniline‐2‐sulfonic acid/aniline composition ratios along the side chains. The copolymers prepared with molar feed ratios greater than 1/2 were water‐soluble and had conductivities comparable to those of the linear copolymers. Furthermore, these copolymers could self‐dope in water through intermolecular or intramolecular interactions between the sulfonic acid moieties and imine nitrogens, and this generated large aggregates. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1090–1099, 2005  相似文献   

17.
A novel amphiphilic thermosensitive poly(ethylene glycol)45b‐poly(methyl methacrylate46co‐3‐(trimethoxysilyl)propyl methacrylate)2b‐poly(N‐isopropylacrylamide)429 (PEG45b‐P(MMA46co‐MPMA2)‐b‐PNIPAAm429) triblock copolymer was synthesized via consecutive atom transfer radical polymerization techniques. The thermoinduced association behavior of the resulting triblock copolymers in aqueous medium was further investigated in detail by 1H NMR, transmission electron microscopy, and dynamic light scattering. The results showed that at the temperature (25 °C) below the LCST, PEG45b‐P(MMA46co‐MPMA2)‐b‐PNIPAAm429 triblock copolymers self‐assembled into the core crosslinked micelles with the hydrophobic P(MMA‐co‐MPMA) block constructing a dense core, protected by the mixed soluble PEG and PNIPAAm chains acting as a hydrophilic shell simultaneously. With an increase in temperature, the resulting core‐shell micelles converted into a new type of micelles with the hydrophilic PEG chains stretching out from the hydrophobic core through the collapsed PNIPAAm shell. On the other hand, at the temperature (40 °C) above the LCST, such triblock copolymers formed the crosslinked vesicles with the hydrophobic PNIPAAm and P(MMA‐co‐MPMA) blocks constructing a membrane core and the soluble PEG chains building the hydrophilic lumen and the shell. On further decreasing the temperature, the resulting vesicles underwent transformation from the shrunken to the expanded status, leading to the formation of swollen vesicles with enlarged size. This study is believed to present the first formation of two types of hybrid crosslinked self‐assemblies by thermoinduced regulation. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
A novel thermoresponsive shell crosslinked three‐layer onion‐like polymer particles were prepared using hyperbranched polyglycerol (PG) as parents compound, the periphery hydroxyl groups of PG were transformed into trithiocarbonates (? SC(S)S? ) first; then, it was used as chain transfer agent to prepare star‐like block copolymer of N‐isopropyl acrylamide (NIPA) and N,N‐dimethylaminoethyl acrylate (DMA) in sequence via reversible addition fragmentation chain transfer (RAFT) process. Thus, a three‐layer polymer, PG? [SC(S)S? (DMA)? b? (NIPA)]n, was obtained. The middle layer of poly(DMA) was then crosslinked with 1,8‐diiodoctane, and the resulting onion‐like three‐layer polymer showed a lower critical solution temperature (LCST) in water because of the outer layer of poly(NIPA). The LCST value only slightly depended on the crosslinking degree. Finally, the ? SC(S)S? were transformed into thiols by sequential treating with sodium borohydride and formic acid; thus, the core molecule was chemically detached from the crosslinked shell and a novel shell crosslinked polymer particle was obtained. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5652–5660, 2005  相似文献   

19.
Self‐assembled thermo‐ and pH‐responsive poly(acrylic acid)‐b‐poly(N‐isopropylacrylamide) (PAA‐b‐PNIPAM) micelles for entrapment and release of doxorubicin (DOX) was described. Block copolymer PAA‐b‐PNIPAM associated into core‐shell micelles in aqueous solution with collapsed PNIPAM block or protonated PAA block as the core on changing temperature or pH. Complexation of DOX with PAA‐b‐PNIPAM triggered by the electrostatic interaction and release of DOX from the complexes due to the changing of pH or temperature were studied. Complex micelles incorporated with DOX exhibited pH‐responsive and thermoresponsive drug release profile. The release of DOX from micelles was suppressed at pH 7.2 and accelerated at pH 4.0 due to the protonation of carboxyl groups. Furthermore, the cumulative release of DOX from complex micelles was enhanced around LCST ascribed to the structure deformation of the micelles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5028–5035, 2008  相似文献   

20.
Radical polymerization of N‐methylacrylamide (NMAAm), N,N‐dimethylacrylamide (DMAAm), and N‐methyl‐N‐phenylacrylamide (MPhAAm) was investigated in toluene at low temperatures. Atactic, isotactic, and syndiotactic polymers were obtained by the polymerization of NMAAm, DMAAm, and MPhAAm, respectively, indicating that the stereospecificity of the radical polymerization of acrylamide derivatives depended on the N‐substituents of the monomer used. From the viewpoint of monomer structure, the origin of the stereospecificity of radical polymerization of NMAAm derivatives is discussed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6534–6539, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号