首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By means of electrospray ionisation mass spectrometry, it was evidenced experimentally that the ammonium cation (NH4+) reacts with the electroneutral [2.2.2]paracyclophane ligand (C24H24) to form the cationic complex [NH4(C24H24)]+. Moreover, applying quantum chemical calculations, the most probable conformation of the proven [NH4(C24H24)]+ complex was solved. In the complex [NH4(C24H24)]+ having a symmetry very close to C3, the ‘central’ cation NH4+ is coordinated by three strong bifurcated intramolecular hydrogen bonds to the corresponding six carbon atoms from the three benzene rings of [2.2.2]paracyclophane via cation–π interaction. Finally, the interaction energy, E(int), of the considered complex [NH4(C24H24)]+ was evaluated as ?625.8 kJ/mol, confirming the formation of this fascinating complex species as well. It means that the [2.2.2]paracyclophane ligand can be considered as an effective receptor for the ammonium cation in the gas phase.  相似文献   

2.
Host‐guest interactions are essential in chemistry, biology, medicine and environmental science. In this combined experimental and theoretical contribution, the encapsulation of 7‐methoxycoumarin (herniarin, 7MC) with p‐sulfonatocalix[4]arene (p‐SC4) is studied using absorption and fluorescence spectroscopy, cyclic voltammetry and computational approaches. The 1:1 stoichiometry is confirmed using Job's plot. Our results show that the keto group of 7MC is the main source for electrochemical conversion of this complex. The excited state 7MC radiative decay is studied using time‐correlated single photon counting technique. The computed UV‐Vis absorption spectra for this complex at gas phase and solvent are online with the experimental spectra. Moreover, we determined the binding energy and the binding constant of the 7MC‐p‐SC4 complex. Density functional theory computations revealed that stabilization of the complex formed by p‐SC4 and 7MC is due to weak noncovalent and dispersive types of interactions. A comparison with encapsulation of amino acids by p‐SC4 is also conducted. Finally, we show that the flexibility of p‐SC4 and the weak nature of its interaction with 7MC are on the origin of the reversibility of encapsulation, which is mandatory for applications such as drug delivery.  相似文献   

3.
1H and 13C NMR studies and quantum chemical calculations show the interaction between 2,11‐dithia‐5,6,8,9‐tetramethyl[32](1,4)cyclophane and nitrosonium cation to result in the formation of π‐ and n‐complexes. According to DFT/B3LYP/6‐31G(2d,p) calculations, formation of nitrosonium complexes is a strongly exothermic process both in gas phase and in SO2. Affinity of single‐charged complexes to NO+ is usually larger than that of double‐charged and triple‐charged complexes, affinity of all the charged complexes to nitrosonium cation in SO2 being larger than that in gas phase. The π‐complex with nitrosonium cation coordinated to the methylated aromatic ring is the most stable with structural characteristics being close to those obtained by X‐ray diffraction for nitrosonium π‐complexes of hexamethylbenzene and other arenes. The N―O bond lengths in all the complexes are quite close to each other and larger than that in NO+ cation. The S―N bond length increases upon transition from single‐charged to double‐charged and polycharged complexes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Density functional theory (DFT) calculations of ring‐shaped α‐cyclo[N]thiophenes with N = 2 to N = 18 have been performed for ideal structures of high symmetry (point groups Cnv and Dnh) and for optimum energy structures of lower symmetry (D2d, Cs, C2v, Ci or C1). Whereas the first three members of the series behave exceptionally the higher members are typical cyclothiophenes consisting of weakly interacting thiophene rings. In contrast to neutral compounds, cations and dications of cyclothiophenes with N ≥5 exhibit pronounced electron delocalizations along the carbon backbone. However, if the functional B3LYP is replaced by BH cations of large ring‐size cations show polaron‐type charge defects. According to broken symmetry DFT calculations dications with N = 14 and N = 18 have biradical character. These structures correspond to two‐polaron‐type structures rather than to dipolarons. The calculated vertical ionization energies of cyclo[N]thiophene are comparable with those of oligo[N]thiophenes of the same number of thiophene rings but the calculated absolute energies are probably too low at large ring size. Cyclothiophenes absorb light of lower energies than the related oligothiophenes. Cyclothiophenes belong to the strongly absorbing organic chromophores. In case of high molecular symmetry some of the excited states of cyclothiophenes are degenerate. The degeneracy is lifted with lower symmetries but the general absorption feature remains. The theoretical results are discussed with respect to recent experimental findings. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Contrary to the typical nucleophilic substitution, occurring on the sulfur atom of 4‐methyl‐1,2,4‐ triazol‐3‐thiole, the reaction with formaldehyde leads to the formation of the N? C bond rather than the S? C bond. The mechanism of this reaction has been characterized theoretically. Calculations indicate that the reaction proceeds via a cyclic transition state involving one solvent molecule with the Gibbs free activation energy of only 2 kcal/mol. The alternative pathway that leads to the S? C bond formation is about 5 kcal/mol more energetically demanding. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
The products formed in 2‐methoxytetrahydropyran elimination reaction in the gas phase are 3, 4‐dihydro‐2H‐pyran and methanol. The kinetic study was carried out in a static system, with the vessels deactivated with allyl bromide, and the presence of the free radical suppressor toluene. Temperature and pressure ranges were 400–450 °C and 25–83 Torr, respectively. The process is homogeneous, unimolecular, and follows a first‐order rate law. The observed rate coefficient is represented by the following equation: log k (s?1) = (13.95 ± 0.15) ? (223.1 ± 2.1) (kJ mol?1) (2.303RT)?1. The reactant exists mainly in two low energy chair‐like conformations, with the 2‐methoxy group in axial or equatorial position. However, the transition state (TS) for the elimination of the two conformers is the same. Theoretical calculations of this reaction were carried for two possible mechanisms from these conformations by using DFT functionals B3LYP, MPW1PW91, and PBE with the basis set 6‐31G(d,p) and 6‐31G++(d,p). The calculation results demonstrate that 2‐methoxytetrahydropyran exists mainly in two conformations, with the 2‐methoy group in axial or equatorial position, that are thermal in equilibrium. The average thermodynamic and kinetic parameters, taking into account the populations of the conformers in the equilibrium, are in good agreement with experimental values at B3LYP/6‐31++(d,p) level of theory. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
8.
In this paper, the photochromic reaction of the 1,2‐bis(5′‐ethoxy‐2′‐(2″‐pyridyl) thiazolyl) compound (named DE) was studied by ultraviolet–visible absorption and various Raman spectroscopies associated with density functional theory calculations. To explain the growth of the visible absorption spectrum when the compound is irradiated with ultraviolet light, we suggest the existence of several conformations of the colored form. We also studied the vibrational spectroscopic properties of DE in different conditions such as powder, thin solid film, or in gold nanorods colloidal solutions. This compound is found photochromic in all these conditions. The theoretical Raman spectra of the open and closed forms reproduce fairly well the experimental data and help the complete assignment of the observed bands. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
The kinetics of the gas‐phase thermal decomposition of the α‐ketoester methyl benzoylformate was carried out in a static system with reaction vessel deactivated with allyl bromide, and in the presence of the free radical inhibitor propene. The rate coefficients were determined over the temperature range of 440–481 °C and pressures from 32 to 80 Torr. The reaction was found to be homogenous, unimolecular and obey a first‐order rate law. The products are methyl benzoate and CO. The temperature dependence of the rate coefficient gives the following Arrhenius parameters: log10 k (s?1) = 13.56 ± 0.31 and Ea (kJ mol?1) = 232.6 ± 4.4. Theoretical calculations of the kinetic and thermodynamic parameters are in good agreement with the experimental values using PBE1PBE/6‐311++g(d,p). A theoretical Arrhenius plot was constructed at this level of theory, and the good agreement with the experimental Arrhenius plot suggests that this model of transition state may describe reasonably the elimination process. These results suggest a concerted non‐synchronous semi‐polar three‐membered cyclic transition state type of mechanism. The most advanced coordinate is the bond breaking Cδ+‐‐‐δ‐OCH3 with an evolution of 66.7%, implying this as the limiting factor of the elimination process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Infrared, Raman and surface‐enhanced Raman scattering (SERS) spectra of 3‐(1‐phenylpropan‐2‐ylamino)propanenitrile (fenproporex) have been recorded. Density functional theory (DFT) with the B3LYP functional was used for optimizations of ground state geometries and simulation of Raman and SERS vibrational spectra of this molecule. Bands of the vibrational spectra were assigned in detail. The comparison of SERS spectra obtained by using colloidal silver and gold nanoparticles with the corresponding Raman spectrum reveals enhancement and shifts in bands, suggesting a possible partial charge‐transfer mechanism in the SERS effect. Information about the orientation of fenproporex on the nanometer‐sized metal structures is also obtained. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A systematic series of ortho‐methyl‐ and nitro‐substituted arylhydrazones 2–6 formed by Japp–Klingemann reaction between pentane‐2,4‐dione and the respective aryldiazonium salts have been synthesized and studied by X‐ray crystal structure analysis, with added quantum chemical calculations. The optimized molecular geometries based on DFT calculations, enabling determination of relevant rotational barriers, and the calculated bond and ring critical points, using the method of ‘atoms in molecules’, were found to correspond with the experimental data, involving specific molecular conformations and hydrogen‐bonded ring structure dependent on the ortho‐substitution, thus making possible reliable structural prediction of this compound class. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
13.
The gas‐phase elimination of 1,1‐dimethoxycyclohexane yielded 1‐methoxy‐1‐cyclohexene and methanol. The kinetics were determined in a static system, with the vessels deactivated with allyl bromide, and in the presence of the free radical inhibitor cyclohexene. The working temperature was 310–360 °C and the pressure was 25–85 Torr. The reaction was found to be homogeneous, unimolecular, and follows a first‐order rate law. The temperature dependence of the rate coefficients is given by the following Arrhenius equation: log k(s?1) = [(13.82 ± 0.07) – (193.9 ± 1.0)(kJ mol?1)](2.303RT)?1; r = 0.9995. Theoretical calculations were carried out using density functional theory (DFT) functionals B3LYP, MPW1PW91, and PBE with the basis set 6‐31G(d,p) and 6‐31G++(d,p). The calculated values for the energy of activation and enthalpy of activation are in reasonably good agreement with the experimental values using the PBE/6‐31G (d,p) level of theory. Both experimental results and theoretical calculations suggest a molecular mechanism involving a concerted polar four‐membered cyclic transition state. The transition state structure of methanol elimination from 1,1‐dimethoxycyclohexane is characterized by a significantly elongated C? O bond, while the Cβ? H bond is stretched to a smaller extent, as compared to the reactant. The process can be described as moderately asynchronic with some charge separation in the TS. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Reactions of 2‐nitro‐, 4‐nitro‐ and 2,4‐dinitrophenylglycidyl ethers with bicyclo[2.2.1]hept‐5‐ene‐endo‐2‐ylmethylamine in isopropanol have been studied. The mixtures of products were chromatographed on silica gel and eluted with ether or ether/2‐propanol (1:1), the structures of individual products have been confirmed by IR spectra, NMR 1H, 13C spectra, using experiments that involve homonuclear and heteronuclear scalar coupling interactions (COSY, TOCSY, HMQC, HMBC), and mass spectrometry. Amino alcohols as the major products of regioselective aminolysis of epoxides (according to the Krasusky rule) have been obtained. The minor products were the compounds with two hydroxyalkyl fragments at the nitrogen atom. In case of dinitrophenylglycidyl ether, it was the minor product of aryl nucleophilic substitution (SNAr). The abnormal course of aminolysis has been confirmed by the results of quantum‐chemical calculations of activation barries and Free Gibbs energies of the competitive reactions of epoxides (at the B3LYP/6‐311 + G(d,p) level of theory). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The mechanism and regioselectivities and stereoselectivities of the [3 + 2] cycloaddition (32CA) reaction of 3‐(benzylideneamino) oxindole (AY) and trans‐β‐nitrostyrene have been studied using both B3LYP and ωB97XD density functional theory methods together with the standard 6‐31G(d) basis set. Four reactive pathways associated with the ortho and meta regioselective channels and endo and exo stereoselective approaches modes have been explored and characterized. While the B3LYP functional fails to predict the experimental regioselectivity, the ωB97XD one succeeds to predict the experimentally observed meta regioselectivity favoring the formation of meta/endo cycloadduct as the major isomer. Inclusion of solvent effects increases the regioselectivity and decreases the experimentally observed stereoselectivity. Analysis of the density functional theory global reactivity indices and the Parr functions of the reagents in its ground state allows explaining the reactivity and the meta regioselectivity of this zwitterionic‐type 32CA reaction, which account for the high polar character of this reaction. Non‐covalent interaction analysis of the most favorable meta/endo transition state structure reveals that the formation of a hydrogen‐bond between 1 nitro oxygen and the AY N–H hydrogen is responsible for the selectivity experimentally found in this polar zwitterionic‐type 32CA reaction.  相似文献   

16.
Synthesis of a bicyclic 2,2‐dioxa oxadiazoline (6,7‐diaza‐1‐methoxy‐5‐methyl‐2,8‐dioxabicyclo[3.2.1]oct‐6‐ene) is reported. Its thermolysis at 27°C is about 200 times as fast as the thermolysis of a monocyclic oxadiazoline model system. Presumably, a cyclic dioxa carbonyl ylide is formed initially and the ylide then undergoes a bond scission to afford either a dioxacarbene or a dialkylcarbene or it cyclizes to an oxirane. A small fraction of a dialkylcarbene was trapped as the product of addition to dimethyl acetylenedicarboxylate (DMAD). Computations of the barriers to the loss of N2 from the oxadiazolines and to the formation of the carbenes from the carbonyl ylide resulting from thermolysis of the bicyclic oxadiazoline are compared to corresponding barriers for a similar monocyclic oxadiazoline. The rate acceleration is accounted for in terms of geometric factors. The complex products from the decomposition of the bicyclic oxadiazoline were not studied. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
A theoretical study of the preferred N‐σ or π configuration of the mono‐ and bis‐pyrrole and imidazole derivatives of alkaline earth metals has been carried by means of DFT and ab initio methods, up to G2 computational level. The energetic results show that the beryllium derivatives prefer the N‐σ configuration while the calcium ones prefer the π one. In the case of magnesium, both configurations present similar stability. The calculated dissociation enthalpies correspond to the fact that the metallic atom is strongly bonded to the azoles in both configurations. The NBO analysis shows that the systems can be considered as formed by the azolates interacting with the charged metallic atom and thus the Natural Energy Decomposition Analysis (NEDA) indicates that the main attractive force is the electrostatic. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Fourier transform (FT)‐Raman and Fourier transform infrared (FT‐IR) spectra of 3‐{[(4‐fluorophenyl)methylene]amino}‐2‐phenylquinazolin‐4(3H)‐one were recorded and analyzed. The vibrational wavenumbers of the title compound were computed using the B3LYP/6‐31G* basis and compared with the experimental data. The prepared compound was identified by NMR and mass spectra. The simultaneous IR and Raman activation of the CO stretching mode shows a charge transfer interaction through a π‐conjugated path. The first hyperpolarizability and infrared intensities are reported. The assignments of the normal modes are done by potential energy distribution (PED) calculations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
The mechanism of sulfurization of substituted triphenylphosphines with 4‐(3‐ and 4‐substituted)‐1,2,4‐dithiazolidine‐3,5‐diones in acetonitrile, dichloromethane, tetrahydrofuran and toluene at 25 °C was studied. The reaction pathway involves rate‐limiting initial nucleophilic attack of the phosphorus at sulfur followed by fast decomposition of the phosphonium intermediate to the corresponding phosphine sulfide, phenylisocyanate and carbonylsulfide. From the Hammett correlations and from the solvent dependency, it was concluded that the transition‐state structure is very polar and resembles the zwitter‐ionic intermediate. The extent of P–S bond formation and S–S bond cleavage is very similar in the solvents series, but the latter gradually decreases with the decreasing polarity of the solvent. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The Fourier transform Raman (FT‐Raman) and Fourier transform infrared (FT‐IR) spectra of 2‐[acetyl(4‐bromophenyl)carbamoyl]‐4‐chlorophenyl acetate were studied. The vibrational wavenumbers were examined theoretically using the Gaussian03 set of quantum chemistry codes, and the normal modes were assigned by potential energy distribution (PED) calculations. The simultaneous Raman and infrared (IR) activations of the CO stretching mode in the carbamoyl moiety show a charge transfer interaction through a π‐conjugated path. From the optimized structure, it is clear that the hydrogen bonding decreases the double bond character of the CO bond and increases the double bond character of the C N bonds. The first hyperpolarizability and predicted IR intensities are reported. The calculated first hyperpolarizability is comparable with the reported values of similar structures, which makes this compound an attractive object for future studies of nonlinear optics. Optimized geometrical parameters of the compound are in agreement with similar reported structures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号