首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we discuss a kind of finite element method by using quartic B‐splines to solve Dirichlet problem for elliptic equations. Bivariate spline proper subspace of S(Δ) satisfying homogeneous boundary conditions on Type‐2 triangulations and quadratic B‐spline interpolating boundary functions are primarily constructed. Linear and nonlinear elliptic equations are solved by Galerkin quartic B‐spline finite element method. Numerical examples are provided to illustrate the proposed method is flexible. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 818–828, 2011  相似文献   

2.
For the Poisson equation on rectangular and brick meshes it is well known that the piecewise linear conforming finite element solution approximates the interpolant to a higher order than the solution itself. In this article, this type of supercloseness property is established for a special interpolant of the Q2 ? P element applied to the 3D stationary Stokes and Navier‐Stokes problem, respectively. Moreover, applying a Q3 ? P postprocessing technique, we can also state a superconvergence property for the discretization error of the postprocessed discrete solution to the solution itself. Finally, we show that inhomogeneous boundary values can be approximated by the Lagrange Q2‐interpolation without influencing the superconvergence property. Numerical experiments verify the predicted convergence rates. Moreover, a cost‐benefit analysis between the two third‐order methods, the post‐processed Q2 ? P discretization, and the Q3 ? P discretization is carried out. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

3.
This article provides a stability analysis for the backward Euler schemes of time discretization applied to the spatially discrete spectral standard and nonlinear Galerkin approximations of the nonstationary Navier‐Stokes equations with some appropriate assumption of the data (λ, u0, f). If the backward Euler scheme with the semi‐implicit nonlinear terms is used, the spectral standard and nonlinear Galerkin methods are uniform stable under the time step constraint Δt ≤ (2/λλ1). Moreover, if the backward Euler scheme with the explicit nonlinear terms is used, the spectral standard and nonlinear Galerkin methods are uniform stable under the time step constraints Δt = O(λ) and Δt = O(λ), respectively, where λ ≤ λ, which shows that the restriction on the time step of the spectral nonlinear Galerkin method is less than that of the spectral standard Galerkin method. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004  相似文献   

4.
Let ex2(n, K) be the maximum number of edges in a 2‐colorable K‐free 3‐graph (where K={123, 124, 134} ). The 2‐chromatic Turán density of K is $\pi_{2}({K}_{4}^-) =lim_{{n}\to \infty} {ex}_{2}({n}, {K}_{4}^-)/\left(_{3}^{n}\right)Let ex2(n, K) be the maximum number of edges in a 2‐colorable K‐free 3‐graph (where K={123, 124, 134} ). The 2‐chromatic Turán density of K is $\pi_{2}({K}_{4}^-) =lim_{{n}\to \infty} {ex}_{2}({n}, {K}_{4}^-)/\left(_{3}^{n}\right)$. We improve the previously best known lower and upper bounds of 0.25682 and 3/10?ε, respectively, by showing that This implies the following new upper bound for the Turán density of K In order to establish these results we use a combination of the properties of computer‐generated extremal 3‐graphs for small n and an argument based on “super‐saturation”. Our computer results determine the exact values of ex(n, K) for n≤19 and ex2(n, K) for n≤17, as well as the sets of extremal 3‐graphs for those n. © 2009 Wiley Periodicals, Inc. J Combin Designs 18: 105–114, 2010  相似文献   

5.
In this paper the long‐time behaviour of the solutions of 2‐D wave equation with a damping coefficient depending on the displacement is studied. It is shown that the semigroup generated by this equation possesses a global attractor in H(Ω) × L2(Ω) and H2(Ω)∩H(Ω) × H(Ω). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
In this article, we discuss the superconvergence of the interpolated collocation solutions for Hammerstein equations. Applying this new interpolation postprocessing to the collocation approximation xh, we get a higher accuracy approximation I xh, whose convergence order is the same as that of the iterated collocation method. Such an interpolation postprocessing method is much simpler. Also, numerical experiments are shown to demonstrate the efficiency of the interpolation postprocessing method. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

7.
A time‐stepping procedure is established and analyzed for the problem of miscible displacement in porous medium. The fluid velocity based on mixed element method is post‐processed by interpolation along Gauss lines. Error analysis shows that this procedure has a superconvergence error bound O(h) with respect to the parameter hp, which is one order higher than the conventional Galerkin or mixed finite element procedures. Compared with the results in the references, the parameter constraint conditions in this article are obviously relaxed. © 2011Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2012  相似文献   

8.
We consider a fully practical finite element approximation of the nonlinear parabolic Cahn–Hilliard system subject to an initial condition on the conserved order parameter , and mixed boundary conditions. Here, is the interfacial parameter, is the field strength parameter, is the obstacle potential, is the diffusion coefficient, and denotes differentiation with respect to the second argument. Furthermore, w is the chemical potential and is the electrostatic potential. The system, in the context of nanostructure patterning, has been proposed to model the manipulation of morphologies in organic solar cells with the help of an applied electric field. In the limit , it reduces to a sharp interface problem that models the evolution of an unstable interface between two dielectric media in the presence of a quasistatic electric field. On introducing a finite element approximation for the above Cahn–Hilliard system, we prove existence and stability of a discrete solution. Moreover, in the case of two space dimensions, we are able to prove convergence and hence existence of a solution to the considered system of partial differential equations. We demonstrate the practicality of our finite element approximation with several numerical simulations in two and three space dimensions. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1890–1924, 2015  相似文献   

9.
This article investigates Petrov‐Galerkin discretizations of operator equations with linearly stable operators, where the residual does not belong to the annihilator W of the discrete test space Wh. Conforming and nonconforming methods are considered separately, and for the treatment of the nonconforming situation the concept of elliptic lifting is introduced. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 241–259, 2002; DOI 10.1002/num.1005  相似文献   

10.
In , , we compute the solution to both the unconstrained and constrained Gauss variational problem, considered for the Riesz kernel of order and a pair of compact, disjoint, boundaryless ‐dimensional ‐manifolds , , where , each being charged with Borel measures with the sign prescribed. Such variational problems over a cone of Borel measures can be formulated as minimization problems over the corresponding cone of surface distributions belonging to the Sobolev–Slobodetski space , where and (see Harbrecht et al., Math. Nachr. 287 (2014), 48–69). We thus approximate the sought density by piecewise constant boundary elements and apply the primal‐dual active set strategy to impose the desired inequality constraints. The boundary integral operator which is defined by the Riesz kernel under consideration is efficiently approximated by means of an ‐matrix approximation. This particularly enables the application of a preconditioner for the iterative solution of the first‐order optimality system. Numerical results in are given to demonstrate our approach. © 2016Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1535–1552, 2016  相似文献   

11.
Here are described four solvers for time‐harmonic electromagnetic fields in checkerboard patterns. A pattern is built by four squares with constant permittivity, or . It is enclosed by conducting walls or is a unit cell of a periodic structure. The field is represented in two ways: by , the transverse component of the magnetic induction, and by , the magnetic vector potential in Lorenz gauge. and satisfy Helmholtz equations in each square as well as transmission and boundary conditions (BCs). These governing equations yield eigensolutions and , which are found to be at worst. Variational versions of the governing equations are introduced. The weak formulations for are standard, while those for are new. They imply that the derivative transmission and BCs are satisfied weakly on interfaces between regions with different permittivity. Eigenpairs are computed approximately by spectral element methods. They yield mutually consistent eigenpairs. However, only about half of the eigenpairs () correspond to eigenpairs (). For each set of BCs, the first few eigenfrequencies are given by tables, and some of the eigenfunctions are presented by contour plots. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 418–444, 2016  相似文献   

12.
Assume that . In this study, the Richardson extrapolation for the tensor‐product block element and the linear finite element theory of the Green's function will be combined to study the local superconvergence of finite element methods for the Poisson equation in a bounded polytopic domain (polygonal or polyhedral domain for ), where a family of tensor‐product block partitions is not required or the solution need not have high global smoothness. We present a special family of partitions satisfying, for any , e is a tensor‐product block whenever where denotes the distance between e and . By the linear finite element theory of the Green's function and the Richardson extrapolation for the tensor‐product block element, we obtain the local superconvergence of the displacement for the linear finite element method over the special family of partitions . © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 930–946, 2014  相似文献   

13.
A two‐level method in space and time for the time‐dependent Navier‐Stokes equations is considered in this article. The approximate solution uMHM is decomposed into the large eddy component vHm(m < M) and the small eddy component wH. We obtain the large eddy component v by solving a standard Galerkin equation in a coarse‐level subspace Hm with a time step length k, whereas the small eddy component w is derived by solving a linear equation in an orthogonal complement subspace H with a time step length pk, where p is a positive integer. The analysis shows that our two‐level scheme has long‐time stability and can reach the same accuracy as the standard Galerkin method in fine‐level subspace HM for an appropriate configuration of p and m. Moreover, some numerical examples are provided to complement our theoretical analysis. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

14.
In this article, an iterative method for the approximate solution of a class of Burgers' equation is obtained in reproducing kernel space . It is proved the approximation converges uniformly to the exact solution u(x, t) for any initial function under trivial conditions, the derivatives of are also convergent to the derivatives of u(x, t), and the approximate solution is the best approximation under the system © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1251–1264, 2015  相似文献   

15.
In this paper, we construct iterative methods for computing the generalized inverse A over Banach spaces, and also for computing the generalized Drazin inverses ad of Banach algebra element a. Moreover, we estimate the error bounds of the iterative methods for approximating A or ad. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The Grünwald formula is used to solve the one‐dimensional distributed‐order differential equations. Two difference schemes are derived. It is proved that the schemes are unconditionally stable and convergent with the convergence orders and in maximum norm, respectively, where and are step sizes in time, space and distributed order. The extrapolation method is applied to improve the approximate accuracy to the orders and respectively. An illustrative numerical example is given to confirm the theoretical results. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 591–615, 2016  相似文献   

17.
We consider the time discretization for the solution of the equation with . Here, the operators Lj are densely defined positive self‐adjoint linear operator on a Hilbert space H and have spectral decompositions with respect to a common resolution of the identity in H . The kernel functions , are assumed to be completely monotonic on (0,∞) and locally integrable, but not constant. The considered time discretization method comes from [Da Xu, Science China Mathematics 56 (2013), 395–424], where the backward Euler method is combined with order one convolution quadrature for approximating the integral term. In this article, the convergence properties of the time discretization are given in the weighted and norm, where ρ is a given weighted function. Numerical experiments show the theoretical results. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 896–935, 2016  相似文献   

18.
The condition number of a discontinuous Galerkin finite element discretization preconditioned with a nonoverlapping additive Schwarz method is analyzed. We improve the result of Antonietti and Houston (J Sci Comput 46 (2011), 124–149), where a bound has been proved for a two‐level nonoverlapping additive Schwarz method with coarse problem using polynomials of degree on a coarse mesh size . In a more general framework, where the concurrency of the algorithm is increased by applying solvers on subdomains smaller than the coarse grid cells, we prove that the condition number of the preconditioned system is where is the coarse space element degree polynomial and is the size of subdomain where local problems are solved in parallel. Our result also extends to the case of discontinuous coefficient, piecewise constant on the coarse grid, for a composite continuous–discontinuous Galerkin discretization. © 2016Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1572–1590, 2016  相似文献   

19.
Numerical method is considered for a coupled continuum pipe‐flow/Darcy model describing flow in porous media with an embedded conduit pipe. A new nonconforming element is constructed to solve the Darcy equation on porous matrix. The existence and uniqueness of the approximation solution are deduced. Optimal error estimates are obtained in and norms. Some numerical examples show the accuracy and efficiency of the presented method. With the same number of nodal‐points and the same amount of computation, the results using the new nonconforming element are much better than those by both conforming element and Wilson nonconforming element on the same mesh. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 778–798, 2016  相似文献   

20.
This article proposes and analyzes a C0‐weak Galerkin (WG) finite element method for solving the biharmonic equation in two‐dimensional and three‐dimensional. The new WG method uses continuous piecewise‐polynomial approximations of degree for the unknown u and discontinuous piecewise‐polynomial approximations of degree k for the trace of on the interelement boundaries. Optimal error estimates are obtained in H2, H1, and L2 norms. Numerical experiments illustrate and confirm the theoretical results. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1090–1104, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号