共查询到20条相似文献,搜索用时 15 毫秒
1.
《Composite Interfaces》2013,20(5):415-429
A randomly distributed multi-particle model considering the effects of particle/matrix interface and strengthening mechanisms introduced by the particles has been constructed. Particle shape, distribution, volume fraction and the particles/matrix interface due to the factors including element diffusion were considered in the model. The effects of strengthening mechanisms, caused by the introduction of particles on the mechanical properties of the composites, including grain refinement strengthening, dislocation strengthening and Orowan strengthening, are incorporated. In the model, the particles are assumed to have spheroidal shape, with uniform distribution of the centre, long axis length and inclination angle. The axis ratio follows a right half-normal distribution. Using Monte Carlo method, the location and shape parameters of the spheroids are randomly selected. The particle volume fraction is calculated using the area ratio of the spheroids. Then, the effects of particle/matrix interface and strengthening mechanism on the distribution of Mises stress and equivalent strain and the flow behaviour for the composites are discussed. 相似文献
2.
Guozheng Kang 《哲学杂志》2013,93(5):599-616
Based on dimensional analysis and finite element calculations, several scaling relationships in the indentation of shape memory alloys with a sharp conical indenter were obtained. These scaling relationships illustrate the dependence of the indentation response on the material properties of shape memory alloys, such as phase transition and plastic deformation. It is shown that the yield stress and strain-hardening exponent of transformed martensite play important roles in the indentation response, in addition to the phase transition properties. Additionally, the general relationships between indentation hardness and phase transition stress, maximum transition strain, martensite yield stress and the strain-hardening exponent of shape memory alloys were obtained. The results show that the indentation hardness of shape memory alloys is not proportional to the phase transition stress or to the martensite yield stress, and cannot be used directly to measure the phase transition stress or the yield stress of shape memory alloys. 相似文献
3.
This work presents a numerical study that addresses the role of the interfacial fracture energy on the debonding process of a capsule embedded in an elastic matrix, which undergoes a uniaxial far-field stress. The motivation of this work is to analyze and to understand the effects of this energy in the framework of the so-called encapsulation-based self-healing cementitious materials, where glass capsules filled with a fluid healing agent are embedded in a cement-based matrix. A two-dimensional plane strain model based on a combination of the classical finite element method and cohesive surface techniques implemented in the commercial code Abaqus® has been used. It has been found that there exist three types of debonding regimes, ranging from a perfect brittle response up to a ductile-limited response, and whose range of validity is governed by a straightforward dimensionless number able to predict the type of debonding as a function of flexural properties of the capsule and the interface strength. 相似文献
4.
In this work,three-dimensional molecular dynamics simulation is carried out to elucidate the nanoindentation behaviour of single crystal Ni.The substrate indenter system is modelled using hybrid interatomic potentials including the manybody potential(embedded atom method) and two-body Morse potential.The spherical indenter is chosen,and the simulation is performed for different loading rates from 10 m/s to 200 m/s.Results show that the maximum indentation load and hardness of the system increase with the increase of velocity.The effect of indenter size on the nanoindentation response is also analysed.It is found that the maximum indentation load is higher for the large indenter whereas the hardness is higher for the smaller indenter.Dynamic nanoindentation is carried out to investigate the behaviour of Ni substrate to multiple loading-unloading cycles.It is observed from the results that the increase in the number of loading unloading cycles reduces the maximum load and hardness of the Ni substrate.This is attributed to the decrease in recovery force due to defects and dislocations produced after each indentation cycle. 相似文献
5.
Investigation of deformation beginning with elasticity and continuing through the elastic–plastic transition to incipient cracking has been conducted for (210), (021) and (001) oriented single crystals of the explosive cyclotrimethylene trinitramine, commonly known as “RDX”. Nanoindentation was performed with a conical tip over a range of loads. The resulting load–depth data exhibited distinct, reproducible, orientation-dependent load excursions demonstrating elastic–plastic transitions. Indent impressions were imaged by atomic force microscopy revealing deformation features consistent with slip on six planes. Impressions on the (210) and (001) planes showed deformation pile-up features associated with the zone axes of slip planes. Slip traces were evident on the (210) plane indicating slip on four planes and suggesting cross-slip. Height data, for impressions formed by progressively increasing loads, indicated one additional slip system consistent with (010) slip. All of the orientations exhibited cracking thresholds at very low loads. The reduced elastic moduli were anisotropic and the hardness values were isotropic indicating limited plasticity. Maximum shear stresses estimated from a Hertzian model, at load excursions, were within 1/15 to 1/10 of published shear moduli, indicating deformation initiated near the theoretical yield strength, presumably by homogeneous nucleation of dislocations. The material strength parameters and deformation pathways inferred from this work are compared to previous microhardness investigations in which the ambiguity of results can be attributed to the effects of cracking and simultaneous slip on multiple systems. A mechanistic explanation for the hindered plasticity, and cracking, observed for RDX is offered in terms of compatibility conditions. 相似文献
6.
磁致伸缩和压电层合材料通过磁致伸缩和压电效应的乘积可以获得大的磁电效应.通过材料的力学本构方程,建立了对称磁电层合板磁电耦合的静态力学模型;采用ANSYS 80多物理场有限元分析软件,对层合结构的磁电转化效应进行了数值计算,并与理论计算值进行了对比.研究结果表明:磁致伸缩/压电的厚度比增加使磁电电压系数增大;所推导的磁电电压系数公式的计算值与等效电路模型推导的公式计算值符合很好;有限元数值计算结果介于两种模型的计算结果之间.
关键词:
磁电效应
层合板
本构方程
有限元分析 相似文献
7.
采用热压工艺制备了碳纤维布和高硅氧纤维布增强的环氧树脂和酚醛树脂基复合材料,研究了不同功率密度连续激光辐照下,复合材料的破坏形式及其组织结构与力学性能的变化。结果表明:当激光辐照功率密度大于0.1 kW/cm2后,树脂基体产生燃烧,碳纤维没有明显的损伤,而玻璃纤维布开始熔融,复合材料的拉伸性能降低30%~40%;当功率密度达到1 kW/cm2以后,除基体燃烧外,碳纤维复合材料产生明显的鼓泡分层,表层碳纤维有少量破断,而高硅氧纤维产生明显的熔融烧损,复合材料的拉伸性能降低80%以上。采用有限元计算方法,对碳纤维增强环氧树脂复合材料在连续激光辐照下的温度场进行了研究,计算结果与实验中复合材料的损伤行为相吻合。 相似文献
8.
CHEN Shangda & KE Fujiu . Department of Applied Physics Beijing University of Aeronautics Astronautics Beijing China . State Key Laboratory of Non-linear Mechanics 《中国科学G辑(英文版)》2004,47(1):101-112
Nanoindentation,namelydepth-sensingindentation(DSI),involvesforcingarigidindenterwithknowngeometryintothesurfaceofamaterialwhilecontinuouslymonitoringtheloadontheindenter,thedisplacementoftheindenterintothesurface,andthetimeoftheexperiment.Thedepthisthenusedtocalculatetheprojectedareaofcontactforthepurposeofcalculatingthehardnessandelasticmodulus.Infact,variouserrorsareassociatedwiththisprocedure.Oneofthemcomesfromthemeasurementofthepenetrationdepth.Ideally,thepenetrationdepthshouldbecalcula… 相似文献
9.
10.
Amziane A Amari M Mounier D Breteau JM Joly N Banchet J Tisseur D Gusev V 《Ultrasonics》2012,52(1):39-46
Laser ultrasonics was applied to the manufacturing control of the integrity (no failure) of coated spherical particles designed for High Temperature Reactors (HTR). This control is of major importance, since the coating of the nuclear fuel kernel is designed to prevent from the diffusion of fission products outside the particle during reactor operation. The SiC layer composing the coating is particularly important, since this layer must be an impenetrable barrier for fission products. The integrity of the SiC shell (no crack within the shell) can be assessed by the ultrasonic vibration spectrum of the HTR particle, which is significantly changed, compared to the reference spectrum of a defect-free particle. Spheroidal vibration modes of defect-free dummy particles with a zirconium dioxide (ZrO2) core were observed in the 2-5 MHz range. A theoretical analysis is presented to account for the observed vibration spectra of defect-free or cracked HTR particles. 相似文献
11.
Gerolf Ziegenhain 《哲学杂志》2013,93(26):2225-2238
We investigate the dependence of the hardness of materials on their elastic stiffness. This is possible by constructing a series of model potentials of Morse type; starting with modelling natural Cu, the model potentials exhibit an increased elastic modulus, while keeping all other potential parameters (lattice constant, bond energy) unchanged. Using molecular-dynamics simulation, we perform nanoindentation experiments on these model crystals. We find that the crystal hardness scales with the elastic stiffness. Also the load drop, which is experienced when plasticity sets in, increases in proportion to the elastic stiffness, while the yield point, i.e. the indentation at which plasticity sets in, is independent of the elastic stiffness. 相似文献
12.
The indentation technique is widely used in measuring the mechanical properties of soft matter at the microscale or nanoscale,but still faces challenges by these unique properties as well as the consequent strong surface adhesion, including the strong nonlinear effect, unclear judgment of the contact point, difficulties in estimating the contact area, and the risk of the indenter piercing the sample. Here we propose a two-step method to solve these problems: lay a hard film on a soft matter, and obtain the viscoelastic properties of this soft matter through the indentation response of this composite structure. We first establish a theoretical indentation model of the hard film-soft substrate system based on the theory of plates, elastic-viscoelastic correspondence principle and Boltzmann superposition principle. To verify the correctness of this method, we measure the mechanical properties of the methyl vinyl silicone rubber(MVSR) covered by a Cu nanofilm. Finally, we test the effectiveness and error sensitivity of this method with the finite element method(FEM). The results show that our method can accurately measure the mechanical properties of soft matter, while effectively circumventing the problems of the traditional indentation technique. 相似文献
13.
M.H. Mahdavi L.Y. Jiang X. Sun 《Physica E: Low-dimensional Systems and Nanostructures》2011,43(10):1813-1819
In the current work, the nonlinear vibration of an embedded double-walled carbon nanotube (DWCNT) aroused by nonlinear van der Waals (vdW) interaction forces from both surrounding medium and adjacent tubes is studied. Using both Euler–Bernoulli and Timoshenko beam models, the relation between deflection amplitudes and resonant frequencies of the DWCNT is derived through harmonic balance method. It is found that the nonlinear vdW forces from the surrounding medium result in noncoaxial vibration of the embedded DWCNT. The noncoaxial vibration includes both uni-directional and bi-directional vibration modes. It is found that the surrounding matrix has more prominent effect on the uni-directional vibration in comparison to the bi-directional vibration. The axial load effect on the vibrational behavior of the embedded DWCNT is also discussed. Due to the influence of the surrounding polymer, the prediction on the resonant frequencies of embedded CNTs is quite different from that for free-standing CNTs. A softening behavior for the deflection amplitude-resonant frequency relation is observed for the first time in the bi-directional vibration of the embedded DWCNT, which can only be obtained using the Timoshenko beam theory. 相似文献
14.
15.
Theoretical investigation on the electronic structure,elastic properties, and intrinsic hardness of Si2N20 下载免费PDF全文
According to the density functional theory we systematically study the electronic structure, the mechanical prop- erties and the intrinsic hardness of Si2N2O polymorphs using the first-principles method. The elastic constants of four Si2N2O structures are obtained using the stress-strain method. The mechanical moduli (bulk modulus, Young’s mod-ulus, and shear modulus) are evaluated using the Voigt-Reuss-Hill approach. It is found that the tetragonal Si2N2O exhibits a larger mechanical modulus than the other phases. Some empirical methods are used to calculate the Vickers hardnesses of the Si2N2O structures. We further estimate the Vickers hardnesses of the four Si2N2O crystal structures, suggesting all Si2N2O phases are not the superhard compounds. The results imply that the tetragonal Si2N2O is the hardest phase. The hardness of tetragonal Si2N2O is 31.52 GPa which is close to values of β-Si3N4 and γ-Si3N4. 相似文献
16.
A systematic finite element analysis (FEA) on the subsequently incident particles which refer to the particles depositing after the formation of the first layer coating is conducted in this study to clarify the bonding mechanism inside the cold sprayed coating. A simplified particle impact model is proposed and the simulated results based on this model demonstrate that substrate hardness exerts some effects on the deformation behavior of the subsequently incident particles. Hard substrate makes these particles deform intensively but using soft substrate enables them to achieve a slight deformation. At the same time, it is also found that substrate hardness plays its best role only when the formed coating is thin, as the development of the coating, the particle deformation behavior becomes more and more insensitive to the substrate hardness. The multi-particle impact simulation based on Eulerian method is also performed and reaches the same conclusion, confirming the accuracy of the simplified model. Besides, it is also found that when the velocity is increased to a hypervelocity, excessive deformation occurs in the formed coatings due to the impact of the subsequently incident particles. 相似文献
17.
运用PIC程序研究了强流离子束中粒子的横向运动,发现了不加控制时束晕粒子并非一直处于晕区和施加非线性控制后粒子的横向运动被限制在一定的范围内形成环状,以及均方根半径的变化近似成为周期运动等性质.根据观察到的均方根半径及其变化率的规律性,提出了一种新的自适应控制器.用该控制器不仅能在很短的时间内完全控制住束晕,而且不需要对增益因子进行精确计算,也能在系统参数改变的情况下取得较好的控制效果.
关键词:
束晕_混沌
粒子跟踪
数值模拟
自适应控制 相似文献
18.
Theoretical investigation on the electronic structure, elastic properties, and intrinsic hardness of Si2N2O 下载免费PDF全文
According to the density functional theory we systematically study the electronic structure, the mechanical prop- erties and the intrinsic hardness of Si2N2O polymorphs using the first-principles method. The elastic constants of four Si2N2O structures are obtained using the stress-strain method. The mechanical moduli (bulk modulus, Young’s mod- ulus, and shear modulus) are evaluated using the Voigt-Reuss-Hill approach. It is found that the tetragonal Si2N2O exhibits a larger mechanical modulus than the other phases. Some empirical methods are used to calculate the Vickers hardnesses of the Si2N2O structures. We further estimate the Vickers hardnesses of the four Si2N2O crystal structures, suggesting all Si2N2O phases are not the superhard compounds. The results imply that the tetragonal Si2N2O is the hardest phase. The hardness of tetragonal Si2N2O is 31.52 GPa which is close to values of β-Si3N4 and γ-Si3N4. 相似文献
19.
Theoretical analysis of interaction between a particle and an oscillating bubble driven by ultrasound waves in liquid 下载免费PDF全文
A theoretical model is developed to describe the interaction of a particle and an oscillating bubble at arbitrary separation between them. The derivation of the model is based on the multipole expansion of the particle and bubble velocity potentials and the use of Lagrangian mechanics. The model consists of three coupled ordinary differential equations. One of them accounts for the pulsation of the bubble and the other two describe the translation of the bubble and particle in an infinite, incompressible liquid. The model here is accurate to order 1/d~(10), where d is the distance between the centers of the particle and bubble. The effects of the size and density of the particle are investigated, namely, the interaction between the particle and bubble changes from repulsion to attraction with the increment of the particle density, and the increment of the particle size makes the interaction between the particle and bubble stronger. It is demonstrated that the driving frequency and acoustic pressure amplitude can affect the interaction of the particle and bubble. It is shown that the correct modeling of the translational dynamics of the bubble and particle at small separation distances requires terms accurate up to the tenth order. 相似文献
20.
Narayan K. Sundaram 《哲学杂志》2013,93(23):2883-2903
ABSTRACTThe indentation of a metal specimen by a narrow-angle wedge produces extreme plastic deformation, with an effect akin to cutting into the metal. Simulation of such processes is challenging, and complicated by the need to model material separation along the indentation symmetry axis. Here we use an Arbitrary Lagrangian Eulerian (ALE) framework to enforce the symmetry boundary conditions (bcs) in their original, `strong’ form, as well as conventional Lagrangian FE to impose the bcs in a complementary, `weak’ form. Taken together these two cases, representing perfectly strong and perfectly weak interfaces, produce accurate bounds on the mechanical response for indentation by wedges with semi-apical angles as small as 15 degrees, and encompass intermediate cases that would require complicated models of ductile failure. The method accurately predicts the transition from the cutting pattern to the non-cutting (radially compressive) pattern as the apical angle is increased. In combination with Lagrangian particle tracking, the simulations reveal the deformation pattern as well as strain, strain-rate, and velocity fields in narrow angle indentation at high resolution. Interestingly, the strong form predicts a thin (tens of microns), near-wall layer of intense plastic strain, which has been observed recently in indentation experiments. With the exception of this feature, the strong and weak bc solutions are quite similar. The present approach reveals insights about plastic flow past narrow obstacles in a range of related problems including cone penetration and machining, and suggests using narrow-angle indentation as a way to probe material failure. 相似文献