首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A series of new reversible addition–fragmentation chain transfer (RAFT) agents with cyanobenzyl R groups were synthesized. In comparison with other dithioester RAFT agents, these new RAFT agents were odorless or low‐odor, and this made them much easier to handle. The kinetics of methyl methacrylate radical polymerizations mediated by these RAFT agents were investigated. The polymerizations proceeded in a controlled way, the first‐order kinetics evolved in a linear fashion with time, the molecular weights increased linearly with the conversions, and the polydispersities were very narrow (~1.1). A poly[(methyl methacrylate)‐block‐polystyrene] block copolymer was prepared (number‐average molecular weight = 42,600, polydispersity index = 1.21) from a poly(methyl methacrylate) macro‐RAFT agent. These new RAFT agents also showed excellent control over the radical polymerization of styrenics and acrylates. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1535–1543, 2005  相似文献   

2.
The immobilization of reversible addition–fragmentation chain transfer (RAFT) agents on silica for surface‐initiated RAFT polymerizations (SI‐RAFT) via the Z‐group approach was studied systematically in dependence of the functionality of the RAFT‐agent anchor group. Monoalkoxy‐, dialkoxy‐, and trialkoxy silyl ether groups were incorporated into trithiocarbonate‐type RAFT agents and bound to planar silica surfaces as well as to silica nanoparticles. The immobilization efficiency and the structure of the bound RAFT‐agent film varied strongly in dependence of the used solvent (toluene vs. 1,2‐dimethoxyethane) and the anchor group functionality, as evidenced by atomic force microscopy, transmission electron microscopy, dynamic light scattering, and UV/Vis spectroscopy. Surface‐initiated RAFT polymerizations using functionalized silica nanoparticles revealed that grafted oligomers, which often occur in SI‐RAFT, are not formed within the crosslinked structures that originate from the immobilization, and that RAFT‐agent films that show less aggregation during the immobilization are more efficient during SI‐RAFT in terms of polymer grafting density. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 103–113  相似文献   

3.
Ethyl S‐(thiobenzoyl)thioacetate, ethyl S‐thiobenzoyl‐2‐thiopropionate, and S‐(thiobenzoyl)thioglycolic acid were used as chain‐transfer agents for the reversible addition–fragmentation chain‐transfer (RAFT) polymerizations of styrene, methyl methacrylate, and butyl acrylate. Of these polymerizations, only those of styrene and butyl acrylate with any of the transfer agents showed molecular weight control corresponding to controlled/living polymerizations. The best molecular weight control was observed for the polymerizations of styrene and butyl acrylate with ethyl (S)‐thiobenzoyl‐2‐thiopropionate. Semiempirical PM3 calculations were performed for the investigation of the relative heats of reaction of the chain‐transfer equilibria between the aforementioned chain‐transfer agents and dimer radicals of the three monomers. The molecular weight control of the polymerizations correlated with the stability trend of the leaving‐group radical of the chain‐transfer agent. This relatively simple computational model offered some value in determining which transfer agents would show the best molecular weight control in RAFT polymerizations. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 555–563, 2002; DOI 10.1002/pola.10143  相似文献   

4.
The kinetics of free‐radical emulsion polymerization of γ‐methyl‐α‐methylene‐γ‐butyrolactone (MeMBL), a renewable monomer related to methyl methacrylate, are presented in detail for the first time, and stable polymer latices are prepared. The effects of different reaction parameters on free‐radical emulsion polymerization of MeMBL are presented. Homogeneous nucleation is asserted to be the dominant path for particle formation. Miniemulsion copolymerization of MeMBL and styrene is also reported. In this case, the homogeneous nucleation process appears limited when using an oil soluble initiator. Both the RAFT miniemulsion polymerizations and RAFT bulk polymerizations are well controlled and narrow polydispersity copolymers are produced. Rate retardation is observed in the RAFT miniemulsion polymerizations compared with the free‐radical polymerization and RAFT bulk polymerizations and the possible causes of the retardation are discussed. The reactivity ratios of MeMBL and styrene in RAFT bulk copolymerization are also determined. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5929–5944, 2008  相似文献   

5.
Electrochemically mediated atom transfer radical polymerizations (ATRPs) provide well‐defined polymers with designed dispersity as well as under external temporal and spatial control. In this study, 1‐cyano‐1‐methylethyl diethyldithiocarbamate, typically used as chain‐transfer agent (CTA) in reversible addition–fragmentation chain transfer (RAFT) polymerization, was electrochemically activated by the ATRP catalyst CuI/2,2′‐bipyridine (bpy) to control the polymerization of methyl methacrylate. Mechanistic study showed that this polymerization was mainly controlled by the ATRP equilibrium. The effect of applied potential, catalyst counterion, catalyst concentration, and targeted degree of polymerization were investigated. The chain‐end functionality was preserved as demonstrated by chain extension of poly(methyl methacrylate) with n‐butyl methacrylate and styrene. This electrochemical ATRP procedure confirms that RAFT CTAs can be activated by an electrochemical stimulus. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 376–381  相似文献   

6.
A simplified kinetic model for RAFT microemulsion polymerization has been developed to facilitate the investigation of the effects of slow fragmentation of the intermediate macro‐RAFT radical, termination reactions, and diffusion rate of the chain transfer agent to the locus of polymerization on the control of the polymerization and the rate of monomer conversion. This simplified model captures the experimentally observed decrease in the rate of polymerization, and the shift of the rate maximum to conversions less than the 39% conversion predicted by the Morgan model for uncontrolled microemulsion polymerizations. The model shows that the short, but finite, lifetime of the intermediate macro‐RAFT radical (1.3 × 10?4–1.3 × 10?2 s) causes the observed rate retardation in RAFT microemulsion polymerizations of butyl acrylate with the chain transfer agent methyl‐2‐(O‐ethylxanthyl)propionate. The calculated magnitude of the fragmentation rate constant (kf = 4.0 × 101–4.0 × 103 s?1) is greater than the literature values for bulk RAFT polymerizations that only consider slow fragmentation of the macro‐RAFT radical and not termination (kf = 10?2 s?1). This is consistent with the finding that slow fragmentation promotes biradical termination in RAFT microemulsion polymerizations. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 604–613, 2010  相似文献   

7.
Well‐defined pyridyl disulfide (PDS) end‐functionalized polymer‐dendritic carbohydrate scaffolds are reported as novel precursors for the attachment of biomolecules. This synthetic approach combines reversible addition fragmentation chain transfer (RAFT) polymerization and “click” reactions. Poly(N‐(2‐hydroxypropyl) methacrylamide) (PHPMA) with 2‐mercaptothiozalidine end‐groups was prepared by RAFT polymerization yielding molecular weights of Mn = 4300 and 9900, both with a polydispersity of less than 1.2. These polymers were then attached to dendritic mannose scaffolds preconstructed via consecutive “click” reactions. Finally, the ω‐dithiobenzoate RAFT end‐group of PHPMA was modified to yield PDS functionality, by aminolysis in the presence of 2,2′‐dithiodipyridine. This PDS end‐functionalized PHPMA‐dendritic carbohydrate scaffold is a versatile precursor for bioconjugations, as the synthetic procedure can easily accommodate a range of sugar functionalities. In addition, the PDS groups can be used to react with any thiol present in a biomolecule (e.g., cysteine residue in proteins, or ? SH terminal nucleotides). To demonstrate the utility of these scaffolds we describe their bioconjugation to short interfering RNA. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4302–4313, 2009  相似文献   

8.
A mass spectrometry analysis has been performed on complex architecture polymeric material produced during reversible addition fragmentation chain transfer (RAFT) polymerizations yielding star polymers. Para‐acetoxystyrene (AcOSty) has been polymerized at 60 °C, using azobisisobutyronitrile (AIBN) as the thermally decomposing initiator, in the presence of the R‐group approach tetrafunctional RAFT agent (1,2,4,5‐tetrakis‐(2‐phenyl‐thioacetyl‐sulfanylmethyl)‐benzene). In addition to ideal star material, a variety of products unique to this mode of polymerization have been identified. These include star–star couples, stars terminated with initiator fragments, star–star couples terminated with initiator fragments and linear polymers, supporting the notion that these species are responsible for the structured molecular‐weight distributions measured for these systems when analyzed via gel permeation chromatography. The analysis begins with a study of AcOSty polymerizing (i) in the absence of any mediating agent and (ii) in the presence of a monofunctional RAFT agent, revealing the mode of termination of propagating poly(AcOSty) radicals as combination and that some ionization biases exist among variants of poly (AcOSty). The interpretation of the mass spectrometry data has been aided by a novel kinetic model of star polymerizations, allowing the rationalization of experimental observations with theoretical expectations. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1873–1892, 2008  相似文献   

9.
Novel methacrylate and acrylate monomers having an isothiocyanate structure, 2‐isothiocyanatoethyl methacrylate (ITEMA) and 2‐isothiocyanatoethyl acrylate (ITEA), were synthesized, and their radical polymerizations were examined, respectively. ITEMA and ITEA were synthesized by addition of carbon disulfide to 2‐aminoethyl methacryrate or 2‐aminoethyl acrylate, followed by treatment with ethyl chloroformate. Radical polymerizations of the obtained monomers ( ITEMA , ITEA ) were carried out methyl ethyl ketone using 2,2'‐azobisisobutyronitrile (AIBN) as an initiator to obtain the corresponding polymers. The glass transition temperatures of the poly‐ITEMA and poly‐ITEA were determined to be 55 and 2 °C by differential scanning calorimetry, respectively. The 5 wt % decomposition temperatures of the poly‐ITEMA and poly‐ITEA were determined to be 277 and 269 °C by thermogravimetric analysis, respectively. Isothiocyanato groups in the monomers did not react with water in acetone solution at 60 °C for 24 h to be tolerable to water. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4522–4529  相似文献   

10.
Pyridyldisulfide (PDS) functionalized telechelic polymers of oligo(ethyleneglycol) acrylate (PEG‐A) and their amphiphilic triblock copolymers with styrene (St) were synthesized directly by reversible addition‐fragmentation chain transfer (RAFT) polymerization using a new bifunctional RAFT agent, S,S‐bis[α,α′‐dimethyl‐α″‐(2‐pyridyl disulfide) ethyl acetate] trithiocarbonate (BDPET). The homopolymerization of PEG‐A was found to be well controlled using BDPET (PDI < 1.2). The ABA triblock copolymers poly(PEG‐A)‐b‐poly(St)‐b‐poly(PEG‐A) with narrow molecular weight distribution (PDI < 1.25) were synthesized using poly(PEG‐A) as a macro‐RAFT agent. UV‐vis spectroscopic analysis revealed that 85 mol % of poly(PEG‐A) and 78 mol % of poly(PEG‐A)‐b‐poly(St)‐b‐poly(PEG‐A) retained PDS end group functionality. Micelles were observed to form from poly(PEG‐A)‐b‐poly(St)‐b‐poly(PEG‐A). The presence of PDS groups within the micelle corona was evidenced by UV‐vis spectroscopy and fluorescence spectroscopy. The PDS groups within the corona were then used to functionalize the micelles with a thiol group bearing model peptide, reduced glutathione, and a thiol modified fluorophore, rhodamine B, under mild reaction conditions. UV‐vis and fluorescence spectrocopies revealed that approximately 80% PDS groups from the amphiphilic copolymer were tethered within the micelle coronas and accessible to glutathione and fluorophore attachment. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 899–912, 2009  相似文献   

11.
High molecular weight poly(vinyl)silazane were synthesized successfully by reversible addition fragmentation chain transfer (RAFT) polymerization in toluene at 120 °C, using dithiocarbamate derivatives and 2,2′‐azobis‐isobutyrylnitrile (AIBN) as the RAFT agents and thermal initiator, respectively. The polymerization of a vinylcyclicsilazane oligomer with 82.5% conversion was readily controlled to increase the molecular weight from 1000 to 12,000 g/mol with a narrow polydispersity <1.5. The resulting polymer showed a high ceramic yield of 70 wt % at 1000 °C. Moreover, the approach was extended successfully to the synthesis of poly(vinyl)silazane‐block‐polystyrene as an inorganic–organic diblock copolymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4594–4601, 2008  相似文献   

12.
Aqueous radical polymerizations of acrylamide were conducted in the presence of varying concentrations of sodium dodecyl sulfate (SDS) and two xanthate reversible addition‐fragmentation chain transfer (RAFT) agents: the small, hydrophobic Rhodixan A1 and the oligomeric, amphiphilic PAm7‐XA1. The presence of SDS led to significant retardation of the polymerization, while the apparent activity of both RAFT/MADIX agents decreased as the SDS concentration increased. PAm7‐XA1 was affected to a lesser degree than Rhodixan A1, probably due to its lesser tendency to become sequestered in SDS micelles. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 760–765  相似文献   

13.
A–B–A stereoblock polymers with atactic poly(N‐isopropylacrylamide) (PNIPAM) as a hydrophilic block (either A or B) and a non‐water‐soluble block consisting of isotactic PNIPAM were synthesized using reversible addition fragmentation chain transfer (RAFT) polymerizations. Yttrium trifluoromethanesulfonate was used in the tacticity control, and bifunctional S,S′‐bis(α,α′‐dimethyl‐α″‐acetic acid)‐trithiocarbonate (BDAT) was utilized as a RAFT agent. Chain structures of the A–B–A stereoblock copolymers were determined using 1H NMR, SEC, and MALDI‐TOF mass spectrometry. BDAT proved to be an efficient RAFT agent in the controlled synthesis of stereoregular PNIPAM, and both atactic and isotactic PNIPAM were successfully used as macro RAFT agents. The glass transition temperatures (Tg) of the resulting polymers were measured by differential scanning calorimetry. We found that the Tg of isotactic PNIPAM is molecular weight dependent and varies in the present case between 115 and 158 °C. Stereoblock copolymers show only one Tg, indicating the miscibility of the blocks. Correspondingly, the Tg may be varied by varying the mutual lengths of the A and B blocks. The phase separation of aqueous solutions upon increasing temperature is strongly affected by the isotactic blocks. At a fixed concentration (5 mg/mL), an increase of the isotacticity of the stereoblock copolymers decreases the demixing temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 38–46, 2008  相似文献   

14.
We prepared well‐defined diblock copolymers of thermoresponsive poly(N‐isopropylacrylamide‐coN,N‐dimethylacrylamide) blocks and biodegradable poly(D ,L ‐lactide) blocks by combination of reversible addition‐fragmentation chain transfer radical (RAFT) polymerization and ring‐opening polymerization. α‐Hydroxyl, ω‐dithiobenzoate thermoresponsive polymers were synthesized by RAFT polymerization using hydroxyl RAFT agents. Biodegradable blocks were prepared by ring‐opening polymerization of D ,L ‐lactide initiated by α‐hydroxyl groups of thermoresponsive polymers, which inhibit the thermal decomposition of ω‐dithioester groups. Terminal dithiobenzoate (DTBz) groups of thermoresponsive blocks were easily reduced to thiol groups and reacted with maleimide (Mal). In aqueous media, diblock copolymer products formed surface‐functionalized thermoresponsive micelles. These polymeric micelles had a low critical micelle concentration of 22 μg/L. In thermoresponsive studies of the micelles, hydrophobic DTBz‐surface micelles demonstrated a significant shift in lower critical solution temperature (LCST) to a lower temperature of 30.7 °C than that for Mal‐surface micelles (40.0 °C). In addition, micellar LCST was controlled by changing bulk mixture ratios of respective heterogeneous end‐functional diblock copolymers. Micellar disruption at acidic condition (pH 5.0) was completed within 5 days due to hydrolytic degradation of PLA cores, regardless of showing a slow disruption rate at physiological condition. Furthermore, we successfully improved water‐solubility of hydrophobic drug, paclitaxel by incorporating into the micellar cores. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7127–7137, 2008  相似文献   

15.
The sterically hindered, 1,1‐disubstituted monomers di‐n‐butyl itaconate (DBI), dicyclohexyl itaconate (DCHI), and dimethyl itaconate (DMI) were polymerized with reversible addition–fragmentation chain transfer (RAFT) free‐radical polymerization and atom transfer radical polymerization (ATRP). Cumyl dithiobenzoate, cumyl phenyl dithioacetate, 2‐cyanoprop‐2‐yl dithiobenzoate, 4‐cyanopentanoic acid dithiobenzoate, and S‐methoxycarbonylphenylmethyl dithiobenzoate were employed as RAFT agents to mediate a series of polymerizations at 60 °C yielding polymers ranging in their number‐average molecular weight from 4500 to 60,000 g mol?1. The RAFT polymerizations of these hindered monomers displayed hybrid living behavior (between conventional and living free‐radical polymerization) of various degrees depending on the molecular structure of the initial RAFT agent. In addition, DCHI was polymerized via ATRP with a CuCl/methyl benzoate/N,N,N′,N″,N″‐pentamethyldiethylenetriamine/cyclohexanone system at 60 °C. Both the ATRP and RAFT polymerization of the hindered monomers displayed living characteristics; however, broader than expected molecular weight distributions were observed for the RAFT systems (polydispersity index = 1.15–3.35). To assess the cause of this broadness, chain‐transfer‐to‐monomer constants for DMI, DBI, and DCHI were determined (1.4 × 10?3, 1.3 × 10?3, and 1.0 × 10?3, respectively) at 60 °C. Simulations carried out with the PREDICI program package suggested that chain transfer to monomer contributed to the broadening process. In addition, the experimental results indicated that viscosity had a pronounced effect on the broadness of the molecular weight distributions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3692–3710, 2006  相似文献   

16.
In this study, a facile strategy for the preparation of thermo‐ and pH‐responsive nanogels through reversible addition–fragmentation transfer (RAFT) crosslinking copolymerization of ionic liquid‐based monomers is demonstrated. The use of chain transfer agents (CTAs) containing carboxyl group in the RAFT polymerizations is the key to producing highly thermoresponsive nanogels. Experimental results demonstrate that the critical gelation temperature of the as‐prepared nanogels can be tuned by adjusting the feed ratio of monomer and CTA. Variable temperature Fourier transform infrared measurements and control experiments indicate that hydrogen‐bonding interactions between the carboxyl groups of CTAs are responsible for the thermoresponsive behaviors of poly(ionic liquid) (PIL)‐based nanogels. Furthermore, PIL‐based nanogels are also found to be pH‐sensitive, and can be further decorated by poly(N‐isopropylacrylamide) (PNIPAAm) via surface grafting polymerization. PNIPAAm‐grafted nanogel aqueous solutions can be reversibly transformed into macrogels upon a change in temperature. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 169–178  相似文献   

17.
The sterically hindered monomers dibutyl itaconate (DBI) and dicyclohexyl itaconate (DCHI) were polymerized via reversible addition fragmentation chain transfer (RAFT) free‐radical polymerization. S,S′‐Bis(α,α′‐dimethyl‐α″‐acetic acid) trithiocarbonate, cumyl dithiobenzoate, and cumyl phenyldithioacetate have been used as RAFT agents to mediate a series of polymerizations at 65 °C yielding rod polymers ranging in number average molecular weight from 9000 to 92,000 g mol?1. The progress of the polymerization was followed via online Fourier transform–near infrared spectroscopy. The polydispersity indices of the obtained rod polymers were relatively high at 1.4–1.7. The RAFT polymerizations of the hindered monomers used in the present study displayed both ideal living and hybrid behavior between conventional and living polymerization, depending on the RAFT agent used. DCHI rod polymers generated via the RAFT process were subsequently reinitiated in the presence of styrene to produce a range of BAAB and A‐B rod‐coil block copolymers of molecular weights up to 164,000 g mol?1. The chain extension yields molecular weight distributions that progressively shift to higher molecular weights and are unimodal. Thermogravimetric analysis of the pDCHI‐blockpStyrene copolymers indicates thermal degradation in two separate steps for the pDCHI and pStyrene blocks. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2432–2443, 2004  相似文献   

18.
Novel xanthate RAFT agents, RAFT1‐5, designed for the preparation of a range of novel N‐vinyl pyrrolidone‐based polymeric materials with linear and star architectures via RAFT polymerization are reported. Ethyl pyrrolidone moiety was included in the structures of the xanthates as a part of R (RAFT1‐3) or Z group (RAFT4) to evaluate their effect on the polymerization and to impart homogeneity in the resulting products. The xanthates were designed to fragment to give primary (RAFT1), secondary (RAFT2 and 4), and tertiary radicals (RAFT 3) allowing evaluation of their effect on polymerization. RAFT5 was designed to produce polymeric materials with four‐arm architectures. RAFT1 showed comparable characteristics as conventional radical polymerization. RAFT2 and RAFT4 exhibited living/controlled polymerizations, owing to the combination of stable secondary radical species and incorporation of ethyl pyrrolidone moiety as the R and Z group, respectively. RAFT2 and RAFT5 gave first examples of random copolymers of NVP and VAc with linear and four‐arm star architectures, all exhibiting monomodal distributions and narrow dispersity. The four‐arm PVAc star was used as a macroCTA to synthesize amphiphilic four‐arm star PVAc‐block‐PNVP. The TEM investigation showed the formation of spherical micelles with an average diameter of about 60 nm. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 775–786  相似文献   

19.
A synthetic protocol for the preparation of hetero‐biofunctional protein–polymer conjugates is described. A chain transfer agent, S,S‐bis (α,α′‐dimethyl‐α″‐acetic acid) trithiocarbonate was functionalized with α,ω‐pyridyl disulfide (PDS) groups, Subsequently, one of the PDS groups was covalently attached to bovine serum albumin (BSA) at the specific free thiol group on the cysteine residue through a disulfide linkage. The second PDS group remained intact, as it was found to be inaccessible to further BSA functionalization. The BSA‐macro‐reversible addition‐fragmentation chain transfer (RAFT) agent was then used to prepare BSA‐polymer conjugates via in situ polymerization of oligo (ethyleneglycol) acrylate and N‐(2‐hydroxypropyl) methacrylamide using an ambient temperature initiator, 4,4′‐azobis [2,9‐imidazolin‐2‐ethyl)propane] dihydrochloride in an aqueous medium. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS‐PAGE) confirmed that the in situ polymerization occurred at the protein surface where the RAFT agent was attached and the molecular weights of the BSA–polymer conjugates were found to increase concomitantly with monomer conversion and polymerization time. After polymerization the remaining terminal PDS groups were then utilized to attach thiocholesterol and a flurophore, rhodamine B to the protein–polymer conjugates via disulfide coupling. UV–Vis and fluorescence analyses revealed that ~80% of the protein conjugates were found to retain integral PDS end groups for further attachment to free thiol‐tethered precursors. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1399–1405, 2010  相似文献   

20.
The reversible addition–fragmentation chain transfer (RAFT) polymerization technique has been employed to synthesize linear α,ω ‐telechelic polymers with either hydroxyl or carboxyl end groups. Methyl methacrylate, butyl methacrylate, and butyl acrylate were polymerized with RAFT polymerization. The polymerizations exhibited the usual characteristics of living processes. Telechelic polymethacrylates were obtained from a hydroxyl monofunctional RAFT polymer with a two‐step chain‐end modification procedure of the dithioester end group. The procedure consisted of an aminolysis followed by a Michael addition on the resulting thiol. The different steps of the procedure were followed by detailed analysis. It was found that this route was always accompanied by side reactions, resulting in disulfides and hydrogen‐terminated polymer chains as side products next to the hydroxyl‐terminated telechelic polymers. Telechelic poly(butyl acrylates) with carboxyl end groups were produced in a single step procedure with difunctional trithiocarbonates as RAFT agents. The high yield in terms of end group functionality was confirmed by a new critical‐liquid‐chromatography method, in which the polymers were separated based on acid‐functionality and by mass spectrometry analysis. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 959–973, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号